Cortisol is a steroid hormone, also called a glucocorticoid, produced by your adrenal glands. These glands sit on top of your kidneys. It is often called the “stress hormone” as it plays a vital role in our body’s fight-or-flight response. Cortisol has numerous important functions, but keeping us alert and energized during stressful situations is a key one.
Cortisol operates on a circadian rhythm called the diurnal rhythm. This rhythm governs the fluctuations of cortisol levels throughout the day, which regulates various physiological processes.
In the early hours of the morning, cortisol levels peak, contributing to the wakefulness and alertness we experience upon rising. This surge in cortisol helps mobilize energy reserves and initiates essential bodily functions to prepare us for the day ahead. As the day progresses, cortisol levels gradually decline, reflecting the body’s diminishing need for heightened alertness.
By midday, cortisol levels begin to plateau, more subtly influencing our physiology. During this time, cortisol continues to modulate our response to stressors, aiding in the regulation of blood pressure, metabolism, and immune function.
As evening approaches, cortisol levels taper off further, signaling the body to wind down and prepare for rest. By late evening, cortisol reaches its lowest point, facilitating relaxation and promoting sleep onset. This decrease in cortisol allows other hormones, such as melatonin, to take precedence, further aiding in the transition to restorative sleep.
Understanding the diurnal rhythm of cortisol is crucial for maintaining optimal well-being. By aligning our activities with the natural fluctuations of cortisol, we can optimize our energy levels, enhance our resilience to stress, and promote overall balance in our daily lives.
Chronically high cortisol levels can wreak havoc on our wellness. Chronic stress, certain medical conditions, and even some medications can contribute to this imbalance. Here’s what you need to know about abnormal cortisol levels:
Genetic factors are crucial in shaping various physiological processes within the human body, including regulating cortisol levels. Understanding the genetic determinants of cortisol regulation sheds light on individual differences in stress response and holds implications for wellness outcomes and susceptibility to stress-related conditions.
Interestingly, the chromosome 14 region with several genes encoding for SERPIN gene family members has emerged as a significant factor in determining blood cortisol levels in many studies, such as a GWAS meta-analysis published in 2021. Serpins (serine protease inhibitors or classified inhibitor family I4) are the largest and most broadly distributed superfamily of protease inhibitors. Serpin-like genes have been identified in animals, poxviruses, plants, bacteria, and archaea, and over 1,500 members of this family have been identified to date and they slow broad functional diversity.Â
SERPINA6, located on chromosome 14, encodes for corticosteroid-binding globulin (CBG), the primary carrier protein for cortisol in plasma. CBG plays a crucial role in regulating the bioavailability and transport of cortisol.
Variations within the SERPINA6 gene have been associated with alterations in CBG concentrations and activity, impacting cortisol binding and release dynamics. Notably, common single nucleotide polymorphisms (SNPs) near the SERPINA6 promoter such as rs7146221, have been identified through genome-wide association studies (GWAS) as contributors to plasma cortisol levels.
These findings highlight the significance of SERPINA6 in modulating cortisol homeostasis and its potential implications in stress-related disorders and other cortisol-associated diseases.
Situated adjacent to SERPINA6 on chromosome 14, SERPINA1 encodes for α1-antitrypsin, a protease inhibitor with diverse physiological functions, including inhibiting enzymes in inflammatory processes.Â
Of particular relevance to cortisol regulation, α1-antitrypsin also plays a role in modulating the activity of corticosteroid-binding globulin (CBG). By inhibiting the cleavage of the reactive center loop of CBG, α1-antitrypsin regulates the release of cortisol from its bound form.
Mutations or common genetic variations, such as rs1243171, within or close to SERPINA1 can affect its interaction with CBG, influencing cortisol availability and plasma levels. Through genetic studies, common variants and rare missense mutations within SERPINA1 have been identified as contributors to cortisol-related traits and diseases, underscoring the importance of this gene in cortisol metabolism and its potential implications for wellness and disease.
In conclusion, genetic factors, such as genetic variation affecting SERPINA1, 2, 6, and 10 genes, exert a significant influence on cortisol regulation, impacting individual responses to stress and vulnerability to stress-related disorders. These insights not only deepen our understanding of stress physiology but also hold promise for personalized interventions targeting stress-related conditions.
Normal cortisol levels follow a circadian rhythm, with levels highest in the morning and tapering off throughout the day. However, several factors can influence cortisol levels:
Here are some ways you can optimize your cortisol levels:
Remember: It’s important to consult with a doctor if you’re concerned about chronically high cortisol levels. They can assess your situation, recommend the most appropriate course of action, and potentially address any underlying medical conditions.
We all know the importance of a healthy diet, a good exercise routine, and relaxation, to cortisol levels and other bodily functions. However, sometimes, our bodies crave a little extra support. That’s where vitamins and supplements come in.
With the LifeDNA Vitamins & Supplements Report, you can gain personalized insights into which vitamins and supplements may best support your unique genetic makeup and lifestyle, helping you optimize your well-being.Â
Take a step towards a better you and unlock the power of personalized wellness with the LifeDNA Vitamins & Supplements Report. Get your report today and discover how targeted supplementation can enhance overall wellness and vitality.
*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.
Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.