The Genetics of Brussels Sprouts Liking

Latest Posts

Table of Contents

The Genetics of Brussels Sprouts Liking

Date of Content: April 10, 2024
Written by: Harvey Talento
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

Brussels sprouts. The mere mention of their name can cause grimaces or cravings, depending on who’s asked. These miniature cabbages have a reputation for dividing people’s opinions, but what if there’s more to their story?

Let’s get into the world of Brussels sprouts and explore why some love them and others don’t.

Brussels sprouts liking

Nutritional Value of Brussels Sprouts

Brussels sprouts aren’t just delicious (once cooked properly), they’re also packed with nutrients that benefit the body in numerous ways:

High in Fiber: Brussels sprouts are a great source of fiber, which keeps one feeling full for longer, aids digestion, and promotes gut wellness

Vitamin Powerhouse: They’re brimming with essential vitamins, particularly vitamins C and K. Vitamin C is crucial for immune function, collagen production, and iron absorption. Vitamin K is vital for blood clotting and bone health.

Antioxidant Advantage: Brussels sprouts are rich in antioxidants, which combat free radicals in the body and may help reduce the risk of chronic diseases like heart disease and cancer.

Why Are Some People Inclined to Brussels Sprouts Liking?

Genetic Influences

There’s a genetic component to Brussels sprouts liking. Human taste buds have receptors for bitterness, and some people have a higher sensitivity thanks to a gene variation. This can make the bitter compounds in Brussels sprouts particularly unpleasant for those who have sensitive taste reception.

A large-scale 2022 GWAS study of food liking identified 1,401 significant food-liking associations which showed substantial agreement in the direction of effects with 11 independent cohorts.

The study used genetic correlations combined with genomic structural equation modeling to create a multi-level map of the relationships between different food preferences, highlighting three main domains that they define as “Highly palatable”; including desserts, meat, and savory foods, “Low caloric”; including vegetables, fruit, and whole grains, and “Acquired” foods including unsweetened coffee, alcohol, cheese, and strong-tasting vegetables.

LifeDNA references this study to analyze specific genes in order to provide personalized insights into Brussels sprouts liking. Genes with genetic variants associated with Brussels sprouts liking include SLC39A8, BNC2, BTBD11, and NCAM1.

Genetic factors have been found to correlate with various aspects of food preferences and could affect liking for food through different pathways related to brain development, energy use, and how we experience rewards. Understanding the role of genetic variation in food preferences could shed light on the genetic and neurological roots of food preferences and decisions, essential for developing more effective dietary plans and creating more appealing food options.

Non-Genetic Factors

Aside from genetics, there are several other factors that can influence Brussels sprouts liking.

  • Age of Exposure: Children, especially picky eaters, maybe more averse to the strong flavors of Brussels sprouts. Repeated exposure over time can lead to a greater appreciation for the vegetable.
  • Learned Association: Negative experiences with Brussels sprouts in the past, especially if they were overcooked or poorly prepared, can influence someone’s present-day feelings about them.
  • Cultural Influence: Some cultures incorporate Brussels sprouts more heavily into their cuisine than others. This familiarity can lead to a greater liking.
  • Taste and Aroma: Brussels sprouts contain sulfurous compounds that can taste bitter or cabbage-like to some people. Genetics can play a role in how strongly someone perceives this bitterness. Cooking methods can also affect the taste. Overcooked sprouts can be mushy and release more of these bitter compounds.

In conclusion, a combination of biology, experience, and cultural factors determines how someone feels about this little green vegetable.

Tips for Preparing Brussels Sprouts

Maybe not everyone will become inclined to Brussels sprouts liking. But with a little openness and some delicious recipes, people might just discover a newfound appreciation for these tiny green powerhouses. Here are some tips on preparing Brussels sprouts:

  • Freshness is key. Look for firm, bright green sprouts with no yellowing.
  • Don’t overcook them. Aim for tender-crisp, not mushy.
  • Embrace variety. Try roasting with bacon and balsamic glaze, or pan-frying with garlic and chili flakes. 
  • Start small. Add a few roasted Brussels sprouts to one’s next meal and see if they enjoy them.

The Brussels Sprouts Redemption

Brussels sprouts have transformed. Modern varieties are milder than their predecessors, thanks to selective breeding. And when it comes to cooking, there’s a whole world beyond boiling. 

Roasting Brussels sprouts brings out their natural sweetness, caramelizing the outer leaves while keeping the interior tender. Pan-frying adds a delightful crispness. One can even shred them for a slaw or puree them into a creamy soup.

About the LifeDNA Nutrition Report

Discover a more vibrant you with the LifeDNA Nutrition Report, a personalized analysis of your DNA that offers tailored advice on nutrition based on your unique genetic makeup.

By understanding how your body reacts to and processes food, you can make smarter choices to reach your wellness goals and avoid potential health risks.

With practical recommendations and comprehensive insights into wellness beyond just food, the LifeDNA Nutrition report empowers you to take control of your well-being simply and effectively. Order your report today and take the first step towards a better you!

Summary

  • Beyond the characteristic taste, Brussels sprouts pack a nutritional punch, offering fiber for digestion, vitamins C and K for immune function and bone health, and antioxidants for disease prevention.
  • Genetics plays a role, with some individuals being more sensitive to bitter flavors due to genetic variations. 
  • Childhood experiences also shape preferences, as negative early encounters can deter future enjoyment.
  • Freshness matters – choose firm, green sprouts and avoid overcooking. Experiment with roasting, pan-frying, or incorporating them into diverse dishes to discover new ways to enjoy their flavors.
  • Brussels sprouts have evolved, with modern varieties milder and cooking methods more varied. Roasting, pan-frying, or using them in creative dishes can unveil their delicious potential, transforming skeptics into enthusiasts.

References

  1. https://www.iowafarmbureau.com/Article/Its-not-your-imagination-brussels-sprouts-do-taste-better-How-gene-editing-is-changing-how-we-grow-and-eat-food
  2. https://www.popsci.com/science/article/2012-03/fyi-why-do-kids-hate-brussels-sprouts/
  3. https://www.nature.com/articles/s41467-022-30187-w

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

Sardines Liking and Genetics

Latest Posts

Table of Contents

Sardines Liking and Genetics

Date of Content: April 9, 2024
Written by: Harvey Talento
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

Sardines might not be the most popular fish at the market. Some people might even wrinkle their noses at the thought of them! But these little fish are actually a delicious and healthy surprise.

Sardines liking

The Flavors of Sardines

Sardines boast a surprisingly delightful taste profile. Their flavor is a balance of saltiness and savory notes, often enhanced by delectable accompaniments such as olive oil or zesty sauces. Whether enjoyed atop crackers or bread, or simply savored on their own, sardines offer a satisfying culinary experience.

Beyond their deliciousness, sardines pack a nutritional punch that benefits the body in various ways. Rich in omega-3 fatty acids, they contribute to the maintenance of a healthy heart and brain function. Additionally, sardines are abundant sources of protein, calcium, and vitamin D, essential nutrients that support overall well-being.

In a world constantly seeking out “superfoods,” sardines emerge as a genuine powerhouse of nutrition, offering a flavorful and convenient means of nurturing one’s wellness.

Going Beyond Canned Sardines

Sardines offer versatility beyond being a quick cracker topper. They lend themselves to various culinary creations, showcasing their adaptability in the kitchen. One popular preparation method involves grilling freshly caught sardines, particularly favored during the summertime. The resulting smoky essence harmonizes flawlessly with the inherent richness of the fish, creating a delectable feast for the senses.

Moreover, sardines can be seamlessly incorporated into an array of dishes, elevating their flavor profile and nutritional value. From enhancing pasta dishes with their briny essence to imparting a savory depth to salads, sardines offer a versatile ingredient that adds a delightful twist to any meal. Additionally, they can be transformed into a flavorful spread, further showcasing their culinary flexibility and appeal.

A Smart Choice for Our Oceans

These days, many fish species face the threat of overfishing, but sardines stand out as a beacon of sustainability. Unlike their counterparts such as tuna, swordfish, or other larger fish species, sardines boast a remarkable ability to reproduce rapidly, ensuring a plentiful presence in oceanic ecosystems. Their robust population levels testify to their resilience and abundance in the vast oceans.

By opting for sardines, individuals not only treat their taste buds to a delectable seafood experience but also contribute to the preservation of marine biodiversity. Choosing sardines aligns with sustainable seafood practices, as they alleviate pressure on more vulnerable fish populations and foster a healthier balance within marine environments.

How Genetics May Influence Sardines Liking

The genetics of food liking, including sardines, is a complex and multifaceted area of research. Twin studies have shown that food preferences, including liking, are moderately heritable traits, with around 50% of their variance in children being explained by genetic factors plus mostly shared environmental effects. In adults, while heritability remains stable, the shared environmental component disappears in favor of the non-shared one (e.g. personal experience).

In a large-scale GWAS study of food liking in 2022, researchers identified 1,401 significant food-liking associations which showed substantial agreement in the direction of effects with 11 independent cohorts. The study also used genetic correlations combined with genomic structural equation modeling to create a multi-level map of the relationships between different food preferences, highlighting three main domains that they define as “Highly palatable”; including desserts, meat, and savory foods, “Low caloric”; including vegetables, fruit, and whole grains, and “Acquired” foods including unsweetened coffee, alcohol, cheese, and strong-tasting vegetables.

Utilizing data from this study, LifeDNA analyzes genetic variants in several genetic locations to provide personalized insights into sardines liking. These locations include genes such as  HNF4GP1, MIR5007, LINC02326, RNU11-5P, and FTO.

Genetic variants are associated with different food-liking dimensions, and they potentially influence food liking through distinct mechanisms involving neural development, energy metabolism, and reward processing.

These findings provide insights into the genetic and neural basis of food preference and choice, which are critical factors in designing better, more targeted dietary interventions and more acceptable nutritious foods.

Non-Genetic Factors Influencing Sardines Liking

Aside from genetics, several other factors influence sardines liking. This may include an interplay between personal preferences, societal influences, and sensory experiences in the realm of culinary taste.

Familiarity Shapes Taste

Early encounters with sardines significantly influence later preferences. Those introduced to well-prepared sardines in their formative years are more likely to develop sardines liking, whereas negative initial experiences may deter future enjoyment.

Cultural Influences

Sardines hold cultural significance in many societies, evoking feelings of comfort and nostalgia. Individuals raised within cultures where sardines are a dietary staple often develop an affinity for their flavors, associating them with familial traditions and positive memories.

Exploring New Flavors

Certain individuals exhibit a propensity for culinary exploration, embracing the challenge of acquiring a taste for unconventional foods. Sardines, with their distinct flavor profile, appeal to adventurous eaters who derive satisfaction from expanding their palate.

Health Considerations

The nutritional composition of sardines, rich in omega-3 fatty acids, protein, calcium, and vitamin D, appeals to health-conscious consumers. The perceived health benefits associated with sardine consumption serve as a significant motivating factor for their inclusion in diets.

Impact of Preparation and Presentation

The manner in which sardines are prepared and served greatly influences their palatability. Thoughtfully cooked sardines with complementary seasonings and garnishes enhance their appeal, whereas poorly executed preparations may diminish their enjoyment.

Understanding the factors that contribute to individuals’ sardines liking requires a holistic examination of their early experiences, cultural backgrounds, culinary inclinations, health concerns, and sensory perceptions. By knowing these influences, researchers can gain insights into the diverse reasons behind the varied attitudes towards sardines in different populations.

How To Develop A Taste for Sardines

While it’s undeniable that this fish can carry a potent aroma, it’s important not to let this characteristic deter sardines liking. For those new to the world of sardine consumption, here are a few helpful tips to navigate this flavorful journey:

  • Embrace Freshness: If sardines are uncharted territory for your palate, consider starting with fresh or frozen varieties. These options often boast a milder flavor profile, easing the transition into sardine appreciation.
  • Harness Pantry Staples: Canned sardines offer convenience and longevity without compromising on nutritional value. Opt for varieties packed in olive oil or infused with zesty lemon for a delightful burst of freshness.
  • Unleash Your Creativity: Elevate your sardine experience by experimenting with various flavor enhancers. A squeeze of lemon, a dash of hot sauce, or a sprinkling of fresh herbs can transform sardines into a culinary masterpiece, captivating the taste buds with each bite.

So, when perusing the aisles of the grocery store, don’t shy away from the sardine section. These petite fish pack a powerful punch of flavor, coupled with an array of health benefits and endless culinary possibilities.

About the LifeDNA Nutrition Report

Discover a more vibrant you with the LifeDNA Nutrition Report, a personalized analysis of your DNA that offers tailored advice on nutrition based on your unique genetic makeup.

By understanding how your body reacts to and processes food, you can make smarter choices to reach your wellness goals and stay ahead of potential health risks.

With practical recommendations and comprehensive insights into wellness beyond just food, the LifeDNA Nutrition report empowers you to take control of your well-being simply and effectively. Order your report today and take the first step towards a better you!

Summary

  • Sardines offer a tasty blend of saltiness and savory notes, boosted by omega-3s, protein, calcium, and vitamin D.
  • From grilling to other culinary creations, sardines are versatile and nutritious additions to meals.
  • Sardines are sustainable, contributing to marine biodiversity and healthy ecosystems.
  • Genetics, familiarity, culture, health, and preparation methods shape individual preferences for sardines.
  • Start with fresh or canned varieties, experiment with flavors, and embrace their unique taste and health benefits.

References

  1. https://unfccc.int/news/plenty-of-fish
  2. https://bastyr.edu/about/news/4-reasons-sardines-are-great-and-2-recipes-convince-you
  3. https://www.nature.com/articles/s41467-022-30187-w

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

Understanding the Genetics of ALA to EPA Conversion

Latest Posts

Table of Contents

Understanding the Genetics of ALA to EPA Conversion

Date of Content: December 9, 2023
Written by: Jess Gayo
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

What is ALA?

Alpha-lipoic acid (ALA), a potent antioxidant, plays a crucial role in cellular energy production and protection against oxidative stress. Also known as thioctic acid, ALA is a naturally occurring compound found in small amounts in certain foods and is also synthesized in the human body. Its unique feature lies in its ability to function in both water-soluble and fat-soluble environments, making it a versatile defender against free radicals.

ALA serves as a cofactor for various enzymes involved in energy metabolism, particularly within the mitochondria—the cell’s powerhouse. Scientific studies have underscored ALA’s potential in managing conditions associated with oxidative damage, such as diabetes and neurodegenerative disorders. Research suggests that ALA may enhance insulin sensitivity, offering promising implications for individuals with type 2 diabetes.

This antioxidant has also garnered attention for its neuroprotective properties, with studies indicating potential benefits in conditions like Alzheimer’s disease. Furthermore, ALA’s role in mitigating inflammation and supporting cardiovascular health adds to its multifaceted appeal. This process might also be particularly relevant to people with special diets like vegetarians.

ALA To EPA Conversion

Is ALA as Good as DHA and EPA?

While alpha-lipoic acid (ALA) shares antioxidant properties with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), they serve distinct roles in the body. DHA and EPA, omega-3 fatty acids predominantly found in fatty fish, are crucial components of cell membranes, particularly in the brain and retina. Scientific studies highlight their pivotal role in cognitive function, cardiovascular health, and modulation of inflammatory response.

 

ALA, on the other hand, functions primarily as an antioxidant and cofactor in cellular energy metabolism. While ALA contributes to overall cellular health, it doesn’t possess the same structural significance as DHA and EPA in neural tissues. Notably, the body can convert ALA into small amounts of DHA and EPA, but the conversion efficiency is limited.

What is EPA?

Eicosapentaenoic Acid (EPA) is a long-chain omega-3 fatty acid abundantly present in fatty fish, such as salmon, mackerel, and sardines. It belongs to the family of polyunsaturated fatty acids (PUFAs) and plays a critical role in human health. Scientific studies consistently underscore the importance of EPA in cardiovascular well-being, primarily due to its anti-inflammatory and anti-thrombotic properties.

EPA serves as a precursor to bioactive lipid mediators, namely resolvins and protectins, which actively participate in resolving inflammation and promoting tissue repair. Its ability to compete with arachidonic acid for enzymatic conversion leads to the production of eicosanoids with reduced inflammatory potential, contributing to the overall anti-inflammatory effects.

Research also suggests that EPA influences lipid metabolism, modulates blood lipid profiles, and exhibits favorable effects on blood pressure, collectively contributing to a cardioprotective role. Furthermore, EPA has demonstrated efficacy in the management of various inflammatory conditions, including rheumatoid arthritis.

As a fundamental component of cell membranes, particularly in the brain, EPA is implicated in cognitive function and mental health. The incorporation of EPA-rich foods or supplements into the diet is recognized as a valuable strategy to support cardiovascular and cognitive health, emphasizing its significance in maintaining overall well-being.

How Does ALA to EPA Conversion Work?

The conversion of Alpha-Lipoic Acid (ALA) to Eicosapentaenoic Acid (EPA) involves a series of enzymatic reactions within the human body. ALA is an omega-3 fatty acid, but it differs structurally from EPA. The conversion primarily occurs through a series of desaturation and elongation steps, catalyzed by various enzymes.

The initial step involves the desaturation of ALA by the enzyme delta-6 desaturase (coded by FADS2), leading to the formation of stearidonic acid (SDA). Subsequently, SDA undergoes further desaturation, facilitated by delta-5 desaturase (coded by FADS1), resulting in the production of eicosatetraenoic acid (ETA). Finally, elongation of ETA is mediated by elongase enzymes, ultimately yielding EPA.

While the body has the capacity to convert ALA to EPA, the efficiency of this process is limited. Various factors, including dietary composition, genetics, and overall health, influence the rate of conversion. It’s noteworthy that the conversion of ALA to EPA and its subsequent metabolites is generally less efficient than obtaining EPA directly from dietary sources, such as fatty fish or EPA-rich supplements. Therefore, for individuals seeking to increase EPA levels, direct consumption of EPA or DHA sources may be a more effective approach than relying solely on ALA conversion pathways.

What Affects ALA to EPA Conversion?

Several factors influence the conversion of Alpha-Lipoic Acid (ALA) to Eicosapentaenoic Acid (EPA) in the human body. From dietary considerations to genetic predispositions, understanding the determinants of this conversion is crucial for optimizing omega-3 fatty acid intake and reaping the associated health benefits.

Genetic Factors

Genetics significantly influence the conversion of Alpha-Lipoic Acid (ALA) to Eicosapentaenoic Acid (EPA). Variations in key genes like FADS2 impact the efficiency of this conversion, shedding light on individual differences in omega-3 fatty acid metabolism and highlighting the role of genetics in dietary health.

FADS2

Genetic factors impact the levels of long-chain n-3 polyunsaturated fatty acids (PUFAs), derived from diet or via alpha-linolenic acid (ALA) conversion. In a study across five cohorts, variations in desaturase genes (FADS1, FADS2) were linked to ALA levels and inversely to levels of eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA). In addition, elongase gene (ELOVL2) variations were associated with higher EPA and DPA, and lower docosahexaenoic acid (DHA) levels. A novel association was also found between DPA and SNPs in GCKR. 

The study suggests a reduced ALA-to-EPA conversion rate in subjects with specific FADS2 variations, such as rs1535. Similar trends were observed in various ethnicities. Understanding these genetic influences sheds light on how genes and the environment interact to affect in circulating essential fatty acid levels.

Environmental Factors

Several environmental factors can influence the conversion of Alpha-Lipoic Acid (ALA) to Eicosapentaenoic Acid (EPA) in the human body, affecting the efficiency of this critical process. Understanding these factors is essential for optimizing omega-3 fatty acid intake and reaping the associated health benefits.

  1. Dietary Composition: The type and amount of dietary fats play a pivotal role in ALA to EPA conversion. A diet rich in omega-3 fatty acids, particularly from marine sources like fatty fish (e.g., salmon, mackerel), provides direct access to EPA, bypassing the need for conversion. Conversely, diets high in omega-6 fatty acids, commonly found in vegetable oils, can compete with ALA for the same enzymes involved in the conversion process, potentially reducing the efficiency of ALA conversion to EPA.
  2. Nutrient Status: Adequate levels of certain nutrients are crucial for optimal conversion. For instance, the conversion of ALA to EPA involves various enzymes that require co-factors, including vitamins B3, B6, C, and the minerals zinc and magnesium. Insufficient levels of these nutrients may hinder the enzymatic reactions, impacting the efficiency of the conversion process.
  3. Oxidative Stress: Oxidative stress, resulting from an imbalance between free radicals and antioxidants, can interfere with the ALA to EPA conversion. Reactive oxygen species generated during oxidative stress may damage the enzymes involved in the conversion pathway, reducing their activity and impeding the overall process.
  4. Inflammation: Chronic inflammation has been linked to reduced efficiency in ALA conversion. Inflammatory conditions can alter the expression of key enzymes involved in the conversion process, disrupting the delicate balance required for optimal omega-3 metabolism.
  5. Age and Gender: Age and gender can also affect conversion efficiency. Studies have suggested that the conversion rate may be significantly higher in women of reproductive age compared to men and postmenopausal women. Additionally, aging may lead to a decline in enzymatic activity, potentially reducing the conversion efficiency in older individuals.
  6. Health Conditions: Certain health conditions, such as diabetes and metabolic syndrome, have been associated with impaired ALA to EPA conversion. These conditions may alter the expression and activity of enzymes involved in the pathway, influencing the overall effectiveness of the conversion process.

Understanding the interplay of these environmental factors together with the genetic predisposition is crucial for individuals seeking to optimize their omega-3 fatty acid status. A holistic approach, encompassing dietary choices, nutrient intake, and lifestyle factors, can contribute to enhancing the efficiency of ALA to EPA conversion and, consequently, reaping the full spectrum of health benefits associated with omega-3 fatty acids.

Why are Omega-3 Fatty Acids Important to the Body?

Omega-3 fatty acids, especially the EPA and DHA, are essential components crucial for maintaining optimal health. Scientific evidence underscores their importance in various physiological processes:

  • Cardiovascular Health: EPA and DHA contribute to cardiovascular health by reducing triglyceride levels, lowering blood pressure, and inhibiting platelet aggregation. These actions collectively mitigate the risk of cardiovascular diseases.
  • Brain Function and Development: DHA, particularly abundant in the brain, is essential for neurodevelopment in infants and supports cognitive function throughout life. Studies suggest that omega-3 fatty acids may play a role in reducing the risk of neurodegenerative disorders.
  • Inflammation Regulation: EPA and DHA possess anti-inflammatory properties, influencing the production of inflammatory mediators. This anti-inflammatory effect is crucial in managing chronic inflammatory conditions and promoting overall immune system balance.
  • Eye Health: DHA is a key component of the retina, and adequate levels are associated with a lower risk of age-related macular degeneration (AMD). Omega-3s contribute to maintaining visual acuity and protecting ocular tissues.
  • Joint Health: Omega-3 fatty acids exhibit anti-inflammatory effects that can be beneficial for individuals with joint disorders like rheumatoid arthritis. They may help alleviate symptoms and improve joint function.
  • Mood and Mental Health: EPA and DHA play roles in neurotransmitter function and membrane fluidity in nerve cells. Research suggests that omega-3 supplementation may have antidepressant and mood-stabilizing effects, impacting mental health positively.
  • Skin Health: Omega-3s contribute to skin health by promoting hydration, reducing inflammation, and supporting the skin barrier function. These factors collectively contribute to maintaining healthy skin.
  • Reproductive Health: Omega-3 fatty acids are vital for reproductive health, influencing fertility, pregnancy, and lactation. DHA, in particular, is crucial for the development of the fetal nervous system.
  • Metabolic Health: Omega-3 fatty acids may play a role in metabolic health by improving insulin sensitivity, reducing inflammation associated with obesity, and managing metabolic syndrome.
  • Cancer Prevention: While research is ongoing, some studies suggest that omega-3 fatty acids may have a protective effect against certain types of cancer. Their anti-inflammatory and antioxidant properties are believed to contribute to this potential benefit.

Given their diverse roles in fundamental biological processes, maintaining adequate levels of omega-3 fatty acids through a balanced diet or supplementation is integral for overall health and well-being.

Is Omega-3 Good for Your Kidneys?

Emerging evidence suggests that omega-3 fatty acids, particularly EPA and DHA, may confer benefits for kidney health. Chronic kidney disease (CKD) is characterized by inflammation, oxidative stress, and altered lipid metabolism, and omega-3s exhibit properties that may address these factors.

  • Anti-Inflammatory Effects: Omega-3 fatty acids are known for their anti-inflammatory properties. In CKD, inflammation plays a pivotal role in disease progression. Omega-3s may help modulate inflammatory responses, potentially mitigating kidney damage.
  • Blood Pressure Regulation: Hypertension is a common contributor to kidney disease. Omega-3s have been associated with blood pressure reduction, contributing to the overall management of hypertension and potentially slowing the progression of CKD.
  • Reduced Proteinuria: Proteinuria, the presence of excess proteins in the urine, is a marker of kidney dysfunction. Studies suggest that omega-3 supplementation may reduce proteinuria, indicating a potential protective effect on kidney function.
  • Antioxidant Properties: Oxidative stress is implicated in CKD pathogenesis. Omega-3 fatty acids possess antioxidant capabilities, scavenging free radicals and attenuating oxidative damage, which could be beneficial for preserving kidney function.
  • Improvement in Lipid Profiles: Dyslipidemia often accompanies CKD. Omega-3s may positively influence lipid metabolism, leading to favorable changes in lipid profiles. This, in turn, may contribute to cardiovascular health in individuals with compromised kidney function.

While these findings suggest potential benefits, it’s crucial to note that research on omega-3s and kidney health is ongoing, and individual responses may vary. Moreover, individuals with CKD should consult healthcare professionals before incorporating omega-3 supplements, as high doses may not be suitable for everyone.

In conclusion, the anti-inflammatory, antioxidant, and blood pressure-regulating properties of omega-3 fatty acids position them as promising candidates for supporting kidney health, but further research is needed to establish clear guidelines for their use in CKD management.

What are Foods Rich in Omega-3 Fatty Acids?

Foods rich in omega-3 fatty acids are essential for maintaining optimal health, as these polyunsaturated fats offer various health benefits. The primary omega-3 fatty acids of interest are plant-based ALA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), predominantly found in marine sources. Here are some scientifically-backed examples of foods rich in omega-3s:

  1. Fatty Fish: Fatty fish like salmon, mackerel, sardines, herring, and trout are exceptional sources of EPA and DHA. Consuming these fish provides direct access to these essential omega-3 fatty acids.
  2. Chia Seeds: Chia seeds are plant-based sources of alpha-linolenic acid (ALA), a precursor to EPA and DHA. These tiny seeds are versatile and can be added to various dishes for a nutrient boost.
  3. Flaxseeds: Flaxseeds are another plant-based option rich in ALA. Grinding flaxseeds enhances their digestibility, allowing for better absorption of ALA.
  4. Walnuts: Walnuts contain ALA and are a convenient and tasty addition to salads, and yogurt, or enjoyed as a snack.
  5. Canola Oil: Canola oil is a cooking oil that contains ALA. Its neutral flavor makes it suitable for various culinary applications.
  6. Edamame: Edamame, or young soybeans, is a plant-based source of ALA and can be included in salads, stir-fries, or enjoyed as a snack.
  7. Seaweed and Algae: Certain types of seaweed and algae-based supplements provide a vegetarian source of EPA and DHA, particularly beneficial for individuals following plant-based diets.
  8. Hemp Seeds: Hemp seeds offer a combination of essential nutrients, including ALA. They can be sprinkled on salads, and yogurt, or incorporated into smoothies.
  9. Brussels Sprouts: Brussels sprouts contain small amounts of ALA and can be a valuable addition to a balanced diet rich in vegetables.
  10. Eggs Enriched with Omega-3s: Some eggs are enriched with omega-3 fatty acids by feeding hens a diet high in omega-3-rich foods or supplements. These eggs can provide a source of DHA.

Incorporating a variety of these omega-3-rich foods into a well-balanced diet contributes to meeting recommended daily intake levels. However, for those with specific dietary restrictions or challenges in obtaining sufficient omega-3s from food alone, supplementation or fortified products may be considered after consulting with a healthcare professional.

How to Maintain Essential Fatty Acids (EFAs) in the Body

Maintaining optimal levels of Essential Fatty Acids (EFAs) in the body is crucial for overall health, as these fats play vital roles in various physiological processes. The two main types of EFAs are omega-3 and omega-6 fatty acids, and achieving a balance between them is key to promoting health and preventing chronic diseases. Here’s a detailed guide on how to maintain EFAs in the body:

  1. Balanced Diet: A well-rounded diet that includes a variety of foods rich in both omega-3 and omega-6 fatty acids is fundamental. Incorporate fatty fish such as salmon, mackerel, and sardines for omega-3s, and sources like nuts, seeds, and vegetable oils for omega-6s.
  2. Limiting Processed Foods: Processed foods often contain oils high in omega-6 fatty acids, contributing to an imbalance in the omega-3 to omega-6 ratio. Minimizing the intake of processed and fried foods helps maintain a more favorable balance.
  3. Cooking with Olive Oil: Olive oil, particularly extra virgin olive oil, is rich in monounsaturated fats and contains a reasonable amount of omega-6 fatty acids. Olive oil for cooking and salad dressings can contribute to a balanced EFA profile.
  4. Choosing Lean Meats: Opting for lean cuts of meat and poultry helps reduce saturated fat intake and promotes a healthier balance of fatty acids.
  5. Avoiding Trans Fats: Trans fats, often found in partially hydrogenated oils, should be avoided. These unhealthy fats not only disrupt EFA balance but also contribute to cardiovascular risk.
  6. Supplementation: In some cases, dietary supplementation may be necessary, especially for individuals with specific dietary restrictions or health conditions. Omega-3 supplements, derived from fish oil or algae-based sources, can help ensure an adequate intake of EPA and DHA.
  7. Limiting Alcohol Intake: Excessive alcohol consumption can impair the body’s ability to convert ALA (omega-3) into the more bioactive forms of EPA and DHA. Moderating alcohol intake supports optimal EFA metabolism.
  8. Managing Stress: Chronic stress can impact the metabolism of EFAs and contribute to inflammation. Implementing stress-management strategies, such as mindfulness and exercise, supports overall EFA balance.
  9. Regular Monitoring and Professional Guidance: Regular health check-ups and consultation with healthcare professionals, including registered dietitians, can help assess EFA levels and provide personalized recommendations based on individual health needs.

Maintaining a balanced intake of omega-3 and omega-6 fatty acids is a dynamic process influenced by dietary choices and lifestyle factors. Striving for a diverse and nutrient-rich diet while being mindful of the sources and proportions of EFAs contributes to optimal health and wellness.

LifeDNA’s ALA to EPA Conversion Report

LifeDNA’s scientifically-backed Nutrition Report delves into your genetic makeup to provide personalized insights on how your body processes alpha-lipoic acid (ALA) into eicosapentaenoic acid (EPA). 

Take control of your wellness journey by understanding your unique nutritional needs. Explore additional reports like the Saturated Fat Metabolism Report, Carbohydrate Metabolism Report, and Preference to Fatty Foods Report to gain a comprehensive understanding of your genetic predispositions. 

Empower yourself with knowledge and make informed choices. Start your wellness journey today by subscribing to LifeDNA and unveiling the roadmap to a healthier, more vibrant you. Your genetic potential awaits — Try life DNA today.

Summary

  • Plant-based Alpha-lipoic acid (ALA) is a potent antioxidant crucial for cellular energy production and defense against oxidative stress.
  • ALA, DHA, and EPA share antioxidant properties but have distinct roles.
  • DHA and EPA, abundant in fatty fish, are vital for cell membranes, cognitive function, and cardiovascular health.
  • ALA primarily acts as an antioxidant and cofactor, with limited structural significance in neural tissues.
  • Eicosapentaenoic Acid (EPA) is a long-chain omega-3 fatty acid crucial for cardiovascular health.
  • ALA converts to EPA through desaturation and elongation steps catalyzed by enzymes. Initial desaturation produces stearidonic acid, followed by further desaturation leading to eicosatetraenoic acid. Elongation of eicosatetraenoic acid results in the formation of EPA, although conversion efficiency is limited.
  • Variations in genes like FADS2 impact the conversion efficiency. Dietary composition, nutrient status, oxidative stress, inflammation, age, gender, and health conditions also influence this conversion.
  • EPA and DHA are essential for cardiovascular health, brain function, inflammation regulation, eye health, joint health, mood, skin health, reproductive health, metabolic health, and potential cancer prevention.
  • Fatty fish, chia seeds, flaxseeds, walnuts, canola oil, edamame, seaweed, algae, hemp seeds, Brussels sprouts, and omega-3-enriched eggs are scientifically-backed sources for the various Omega-3 fatty acids.

References

  1. https://www.webmd.com/diet/alpha-lipoic-acid-ala
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423769/#:~:text=Energy%20metabolism%20is%20the%20process,multiple%20pathways%20to%20produce%20energy.
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824456/
  4. https://pubmed.ncbi.nlm.nih.gov/17982894/
  5. https://www.webmd.com/vitamins/ai/ingredientmono-864/docosahexaenoic-acid-dha
  6. https://www.webmd.com/vitamins/ai/ingredientmono-994/eicosapentaenoic-acid-epa
  7. https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/polyunsaturated-fats
  8. https://pubmed.ncbi.nlm.nih.gov/17343773/
  9. https://www.nutraingredients-usa.com/Article/2010/11/08/Omega-3-ALA-intakes-enough-for-EPA-DPA-levels-for-non-fish-eaters#
  10. https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002193
  11. https://lpi.oregonstate.edu/mic/other-nutrients/essential-fatty-acids
  12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641984/#:~:text=Ingestion%20of%20omega%2D3%20fatty,tolerated%2C%20and%20risk%2Dfree.
  13. https://stanfordhealthcare.org/medical-clinics/cancer-nutrition-services/reducing-cancer-risk/omega-3-fatty-acids.html#:~:text=Researchers%20are%20studying%20the%20effects,Alpha%2Dlinolenic%20acid
  14. https://www.bmj.com/company/newsroom/omega-3-fatty-acids-in-seafood-linked-to-lower-risk-of-chronic-kidney-problems/#:~:text=Higher%20levels%20of%20omega%203,derived%20omega%203%20fatty%20acids.
  15. https://ods.od.nih.gov/factsheets/Omega3FattyAcids-Consumer/#:~:text=Fish%20and%20other%20seafood%20(especially,soybean%20oil%2C%20and%20canola%20oil)
  16. https://ods.od.nih.gov/factsheets/Omega3FattyAcids-Consumer/#:~:text=Fish%20and%20other%20seafood%20(especially,soybean%20oil%2C%20and%20canola%20oil)
  17. https://www.medicalnewstoday.com/articles/essential-fatty-acids#summary

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

Exploring the Genetic Factors Behind Breakfast Choices

Latest Posts

Table of Contents

Exploring the Genetic Factors Behind Breakfast Choices

Date of Content:  January 22, 2024
Written by: Avanthika Nityanand
Reviewed by: Maarit Tiirikainen, Ph

Facebook
Twitter
LinkedIn

Overview

A healthy breakfast provides a balanced mix of essential nutrients to start the day. It typically includes a good balance of carbohydrates, protein, healthy fats, and fiber. Examples include oatmeal topped with fruits and nuts, whole-grain toast with avocado and a poached egg, or a smoothie made with Greek yogurt, berries, and a handful of spinach.

Preference for healthy breakfast

Benefits Of Eating Healthy Breakfast

A 2013 study showed that individuals who consumed breakfast daily gained significantly less weight over 18 years. Moreover, daily breakfast eaters showed a decreased risk of several metabolic conditions, including abdominal obesity, general obesity, metabolic syndrome, and hypertension.

In a randomized crossover design trial, twenty female subjects were asked to either consume a 350-kcal NP breakfast with 13g protein, a 350-kcal HP breakfast with 35g protein or continue to skip breakfast for six days. Various tests and questionnaires were conducted on the seventh day to assess appetite, satiety, and brain responses to food cues.

The results showed that eating breakfast, regardless of protein content, reduced daily hunger and increased fullness compared to skipping breakfast. However, the HP breakfast was more effective in increasing fullness than the NP breakfast. Unlike the NP breakfast, the HP breakfast also led to beneficial hormonal changes, decreasing ghrelin (a hunger hormone) and increasing peptide YY (a satiety hormone). 

Benefits In Children

Long-term effects of eating a healthy breakfast include improvements in cognitive performance, academic achievement, quality of life, well-being, and a reduction in morbidity risk factors, as shown by this 2019 systematic review. The findings suggested that eating breakfast positively impacted various aspects of children’s and adolescents’ lives.


A 2021 study investigated the relationship between breakfast habits and cognitive performance in 1181 Chilean adolescents aged 10-14. The findings revealed a positive association between having breakfast just before cognitive tasks and higher cognitive performance, particularly when the breakfast was of high quality and included at least two quality components.

Is Skipping Breakfast a Bad Habit?

Regularly skipping breakfast can have several effects on your health and well-being. First, it may lead to increased hunger later in the day, often resulting in overeating or choosing less nutritious foods, contributing to weight gain and unstable blood sugar levels. This practice can disrupt your body’s internal clock or circadian rhythm, potentially impacting metabolism and increasing the risk of insulin resistance, a precursor to type 2 diabetes.

Furthermore, missing breakfast can negatively affect cognitive functions like memory and concentration. This is particularly important for children and adolescents whose developing brains rely on a regular intake of nutritious food for optimal performance in school.

For those concerned about heart health, skipping breakfast altogether has been associated with a higher risk of cardiovascular diseases, including hypertension and high cholesterol. This could be due to irregular eating patterns leading to worse daily dietary choices.

Genetics of Breakfast Preference

Genetics plays a substantial role in the variability of meal timing, particularly for breakfast. A 2019 twin study assessed the timing of daily meals and related behavioral traits like chronotype, bedtime, and wake time. The midpoint of food intake between breakfast and dinner was calculated, and genetic influences on these timings were evaluated by comparing correlations in monozygotic and dizygotic twins. The results showed a significant genetic component in determining food intake timing, especially for breakfast.

Another 2019 GWAS aimed to understand the genetic factors influencing breakfast skipping. The result showed six genetic variants associated with several biological processes, including caffeine metabolism (genes ARID3B/CYP1A1), carbohydrate metabolism (gene FGF21), schizophrenia (gene ZNF804A), and enzymes crucial for N6-methyladenosine RNA transmethylation (genes METTL4, YWHAB, and YTHDF3), which influence the circadian rhythm.

A 2020 study aimed to explore if there’s a causal relationship between a genetic predisposition to being a morning person and certain dietary habits. Using a two-sample Mendelian randomization (MR) analysis, the researchers analyzed genetic variants associated with morning preference and their potential effects on food intake. They used data from the UK Biobank, involving over 361,000 participants, to assess the intake of 61 food items. The results showed that a genetic tendency towards a morning preference was linked with higher consumption of healthier food items like fresh fruit, bran cereal, and water and lower consumption of less healthy items like processed meat and full cream milk. 

A 2022 large-scale GWAS was done on 161,625 participants, assessing their liking for 139 foods. The study confirmed a strong link between the NEGR1 gene (rs3101336; C allele) and food preference. The study uncovered nine significant genetic links to a preference for a healthy breakfast. Among them is the NEGR1 gene, which encodes a protein involved in neuron growth and development. This protein is part of the immunoglobulin superfamily. Past studies have also linked this gene to obesity. Another significant association, interestingly, was with LOC647107. LOC647107 is a pseudogene, meaning it is similar to normal genes but cannot typically be coded for functional proteins. Although pseudogenes have traditionally been dismissed as nonfunctional, recent studies have mapped some of them to gene regulatory functions, like for LOC647107.

Non-Genetic Factors Influencing Preference For Healthy Breakfast

Non-genetic factors that influence an individual’s preference for a healthy breakfast are varied and can include the following:

Cultural and Familial Influences

Cultural norms and family practices often shape dietary habits. If a person is raised in a family or culture that prioritizes healthy eating, including healthy breakfast choices, they are more likely to continue these habits into adulthood.

Personal Health Goals

Individuals focused on weight management, fitness, or overall wellness often choose healthier breakfast options to align with their health objectives.

Education and Awareness

Knowledge about nutrition plays a crucial role. The more a person understands the impact of food on health, energy levels, and well-being, the more likely they are to choose healthier breakfast options.

Availability and Accessibility

Easy access to healthy food options significantly influences dietary choices. If healthy ingredients are readily available at home or healthy eateries nearby, one is more likely to opt for a healthy breakfast.

Time and Convenience

Busy lifestyles can impact breakfast choices. People might opt for fast but unhealthy options, but also healthy options like overnight oats or smoothies that are quick to prepare, especially if they have limited time in the mornings.

Economic Factors

Economic status can affect food choices. Healthy foods are often perceived as more expensive, but this isn’t always true. Financial constraints might influence the preference for certain types of breakfast foods.

Taste Preferences

Personal taste and enjoyment play a significant role in food selection. If someone enjoys the taste of healthy breakfast foods, they are more likely to eat them regularly.

Health Conditions or Dietary Restrictions

Medical advice or personal health conditions like diabetes, heart disease, or allergies can influence breakfast choices, leading to a preference for healthier options.

Social Influences and Trends

Peer groups, social media, and current trends can impact food choices. The popularity of health and wellness trends often encourages people to try incorporating healthier options into their diet, including breakfast.

Psychological Factors

Mood and psychological state can influence food choices. Some might choose healthier options as a form of self-care or to boost mood and energy levels.

Understanding these factors can help develop strategies to encourage healthier breakfast choices among different populations.

Quick Breakfast Ideas for Busy People

Classic Breakfast Sandwich

What you need: English muffin, scrambled eggs, cooked bacon or sausage, cheese, and a touch of ketchup or hot sauce.

Assemble the ingredients into a delicious breakfast sandwich for a protein-packed start to your day.

Avocado Toast [Vegan]

What you need: Sliced whole-grain bread, ripe avocado, lemon juice, red pepper flakes, and salt.

Mash avocado on toasted bread sprinkled with lemon juice, red pepper flakes, and a pinch of salt for a creamy and flavorful vegan toast.

Greek Yogurt Parfait

What you need: Greek yogurt, honey, granola, and fresh berries.

Layer Greek yogurt with honey, granola, and berries in a jar for a quick and satisfying breakfast.

Breakfast Burrito

What you need: Scrambled eggs, cooked diced ham or turkey, sautéed bell peppers and onions, shredded cheese, and salsa.

Fill a tortilla with the ingredients, roll it up, and microwave for a minute or two for a savory breakfast burrito.

Chia Seed Pudding [Vegan]

What you need: Chia seeds, almond milk (or any plant-based milk), maple syrup (or agave nectar), and fresh fruit.

Mix chia seeds with almond milk and sweetener, refrigerate overnight, and top with fresh fruit in the morning for a nutritious and easy vegan breakfast.

Some FAQs

Is the McDonald's breakfast healthy?

While McDonald’s breakfast menu typically features items high in sodium, sugars, and unhealthy fats, healthier alternatives are available when dining there is unavoidable. Options like the Fruit & Maple Oatmeal or the Egg White Delight McMuffin offer more nutritious choices with fewer unhealthy ingredients. It’s best to avoid highly processed items and those with excessive cheese, deep-fried items, and meat.

What is a healthy breakfast to lose weight?

A healthy breakfast for weight loss should be low in calories but high in nutrients to keep you feeling full longer. Options like a green smoothie with protein powder, Greek yogurt with fresh fruit, or scrambled eggs with vegetables on whole-grain toast are excellent. These meals combine good protein, fiber, and healthy fats.

Is oatmeal a healthy breakfast?

Oatmeal is a nutritious breakfast choice, particularly because of its high fiber content, which is beneficial for heart health and helps manage blood sugar levels. Choosing plain oats over pre-sweetened varieties and adding fruits, nuts, or a bit of honey for flavor is recommended.

What constitutes a healthy breakfast for people with diabetes?

For a diabetic, a healthy breakfast focuses on low glycemic index foods to help maintain stable blood sugar levels. Ideal choices include high-fiber whole grains, nuts, seeds, and lean proteins. A diabetic-friendly breakfast might be a bowl of steel-cut oats with almonds and berries, an omelet with spinach and mushrooms, or low-fat yogurt with a sprinkle of chia seeds and apple slices.

References

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

Genetics Of Protein Needs: Balancing Your Macronutrients

Latest Posts

Table of Contents

Genetics Of Protein Needs: Balancing Your Macronutrients

Date of Content:  November 22, 2023
Written by: Avanthika Nityanand
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

Overview

Proteins are fundamental components of all living organisms and are crucial in virtually every biological process. As the building blocks of life, they are essential for the structure, function, and regulation of the tissues and organs. 

The significance of proteins in the body is immense and multifaceted. Understanding proteins and their functions is crucial for advancing medical science, improving health treatments, and developing nutritional guidelines tailored to individual needs.

Here is an overview of their significance:

Structural Support: Proteins provide structural support to cells and tissues. For example, collagen, a protein, is an essential component of skin, tendons, and bones.

Enzymatic Functions: Many proteins act as enzymes, speeding up biochemical reactions essential for digestion, energy production, and other metabolic processes.

Transport and Storage: Proteins transport substances across cell membranes and within the bloodstream. Hemoglobin, a protein in red blood cells, carries oxygen throughout the body.

Immune Response: Antibodies are proteins that play a critical role in the immune system, identifying and neutralizing pathogens like bacteria and viruses.

Cellular Communication: Proteins are involved in cell signaling, helping cells to communicate with each other. It is vital for processes like growth and repair.

Hormonal Regulation: Some hormones, such as insulin, are proteins. They play pivotal roles in regulating physiological processes, including metabolism, growth, and development.

Muscle Contraction: Actin and myosin, two types of proteins, are essential for muscle contraction and movement.

Proper management of protein intake is essential for various health objectives, including weight loss, muscle gain, and overall well-being. The first step in this journey is to accurately calculate your protein needs, which vary based on age, gender, activity level, and specific health goals. For the average adult, a standard guideline is consuming about 0.8 grams of protein per kilogram of body weight daily. However, if your aim is muscle gain or weight loss, this requirement often increases to around 1.2 to 2.0 grams per kilogram.

When focusing on weight loss, boosting your protein intake can be particularly beneficial. It aids in maintaining satiety, reducing overall calorie consumption, and preserving lean muscle mass even as you lose weight. Including protein powder supplements is a popular choice to increase your daily protein intake. Lean meats, eggs, dairy, legumes, nuts, and seeds are excellent food choices for protein.

For those looking to build muscle, the emphasis should not just be on the amount of protein consumed but also on its quality. Incorporating protein-rich meals and snacks throughout the day supports muscle repair and growth and complements your resistance training efforts.

Tracking your daily protein intake is another crucial aspect. Utilizing food diaries and nutrition tracking apps or maintaining a conscious awareness of the protein content in your meals can help ensure you meet your dietary targets.

The general dietary guidelines suggest that 10-35% of your daily calories should be from protein. Based on your fitness or health goals, the range is adjusted. Understanding and managing your protein consumption is critical for losing weight, gaining muscle, or staying healthy. By focusing on a balanced diet and keeping track of your intake, you can get maximum benefits from protein to meet your health objectives effectively.

Protein Intake

Genetics Of Protein Intake

FTO

The FTO gene (Fat Mass and Obesity-Associated protein) is widely studied in the context of obesity and body mass regulation. It encodes an enzyme responsible for nucleic acid demethylation (removing methyl groups from DNA, which can alter gene expression without changing the genetic sequence), playing a vital role in energy balance and metabolic processes.

Notably, variations in the FTO gene are strongly linked to an increased likelihood of obesity, as individuals with specific gene variants tend to have a higher body mass index (BMI) and are more prone to obesity. These genetic differences may influence eating behaviors, leading to an increased appetite, higher calorie intake, and a preference for calorie-dense foods.

You Might Also Like: How Do Genes Influence Weight Change? 

The enzyme produced by the FTO gene removes methyl groups from DNA, impacting the expression of other genes, especially those influencing fat storage and energy utilization. The gene’s expression in multiple body tissues, including critical areas in the brain like the hypothalamus, underscores its significant role in appetite regulation.

Variations in the FTO gene are associated with changes in dietary habits, specifically showing an association with increased energy intake, fat, and protein. A 2013 GWAS highlighted that variant (rs1421085) of the FTO gene was associated with higher protein intake.

FGF21

The FGF21 gene) codes for the Fibroblast Growth Factor 21 protein, which belongs to the large fibroblast growth factor family. This protein plays a pivotal role in metabolic regulation, particularly in managing glucose uptake, insulin sensitivity, and lipid metabolism. It is essential for maintaining energy homeostasis, especially during fasting or starvation. Variant rs838133 of this gene is associated with decreased protein intake.

Non-Genetic Factors Influencing Protein Intake

Non-genetic factors influencing protein intake are diverse, encompassing various aspects of lifestyle, environment, and individual choices. These factors are crucial in determining how much protein an individual consumes. Some of the vital non-genetic factors include:

Dietary Habits and Preferences: Personal food preferences and habits greatly influence protein intake. Cultural and regional dietary patterns also play a role, as some cuisines are naturally higher in protein sources than others.

Nutritional Knowledge and Awareness: An individual’s understanding of their nutritional needs and including protein in the diet can significantly affect their protein consumption.

Understand Your Nutritional Needs. Get the LifeDNA Nutrition Report

Health and Fitness Goals: People with specific health or fitness goals, such as muscle building, weight loss, or managing a health condition, may adjust their protein intake accordingly.

Economic Factors: Economic status and affordability of food can impact protein intake. High-quality protein sources like meat, fish, and dairy can be expensive, influencing consumption patterns.

Age and Physiological Needs: Different life stages have varying protein requirements. For instance, growing children, pregnant women, and senior citizens may have increased protein needs.

Activity Level and Physical Exercise: Active individuals and athletes often have higher protein requirements to support muscle repair, growth, and overall recovery.

Health Status and Medical Conditions: Certain medical conditions, such as kidney disease, can affect how the body processes protein, influencing protein intake recommendations.

Dietary Restrictions and Allergies: Vegetarian or vegan diets and allergies to specific protein sources (like dairy or nuts) can shape how an individual meets their protein requirements.

Social and Psychological Factors: Social influences, peer groups, and psychological factors like stress and personal beliefs can impact eating behaviors and protein consumption.

Accessibility and Convenience: Easy access to protein-rich foods and the convenience of preparation can also affect protein intake. Processed and fast foods, which might be high in protein but low in nutritional quality, are often more accessible.

How To Meet Your Daily Protein Needs: For Vegetarians & Vegans

Meeting daily protein needs as a vegetarian involves incorporating various plant-based protein sources into your diet. Here is how vegetarians can ensure they get enough protein:

  1. Diversify Protein Sources: Include a variety of plant-based protein sources like lentils, chickpeas, black beans, and other legumes. These are high in protein and provide fiber and other nutrients.
  2. Include Whole Grains: Whole grains like quinoa, barley, and brown rice are good protein sources. Quinoa is particularly beneficial as it contains all nine essential amino acids.
  3. Include Soy Products: Soy products like tofu, tempeh, and edamame are excellent protein sources. You can cook them in various ways and add them to versatile recipes.
  4. Include Nuts and Seeds: Almonds, walnuts, chia seeds, flaxseeds, and hemp seeds are not only protein-rich but also provide healthy fats. You can add them to salads and yogurt or enjoy them as snacks.
  5. Eat Dairy and Eggs (for vegetarians who eat eggs): These are excellent protein sources for those who eat dairy and eggs. Greek yogurt, cheese, and eggs can significantly boost protein intake.
  6. Explore Protein-Rich Vegetables: While (most/many?) vegetables are not as high in protein as legumes and nuts, some, like broccoli, spinach, and Brussels sprouts, do contain significant amounts.
  7. Snack on Protein-Rich Foods: Choose snacks high in protein, such as yogurt, cheese, nuts, or a protein shake made with plant-based protein powder.
  8. Use Fortified Foods: Some foods and beverages contain additional protein and nutrients, such as certain plant milk and cereals.
  9. Combine Incomplete Proteins: Understand the concept of complete and incomplete proteins. Combining plant-based protein sources (like beans and rice) can ensure you get all essential amino acids.
  10. Monitor and Plan Meals: Keep track of your protein intake to ensure you meet your daily needs. Planning meals can help achieve a balanced diet that covers all essential nutrients.

Remember, the key is variety and balance. A well-planned vegetarian or vegan diet can efficiently meet the protein requirements.

About The LifeDNA Nutrition Report

Do you want to know if you have a higher genetic likelihood for lactose intolerance or gluten sensitivity, or how well your body metabolizes caffeine? The Nutrition Report from LifeDNA offers genetically tailored nutrition insights that can help optimize your wellness. The report delves into your genetic predispositions to food intolerances and provides dietary recommendations for macro and micronutrients. 

The LifeDNA Nutrition report includes a specific analysis for Protein Intake. Get yours here.

References

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

* LifeDNA is not associated with the above company. 

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

The Role of Genetics in Satiety and Its Impact on Eating Patterns

Latest Posts

Table of Contents

The Role of Genetics in Satiety and Its Impact on Eating Patterns

Date of Content: November 15, 2023
Written by: Harvey Talento
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

What is Satiety?

Satiety refers to feeling full or experiencing a diminished appetite after a meal. It involves both physical and psychological satisfaction following food consumption. This sense of fullness can be immediate, like when quenching thirst, or it can endure for several hours, as observed after finishing a meal.

The composition of the food or beverage consumed influences the duration of satiety. For instance, the impact of consuming something sugary, such as a soft drink, may provide temporary satisfaction, but hunger tends to return shortly afterward.

In contrast, combining a sugary drink with a protein-rich sandwich or other substantial foods tends to prolong the feeling of satisfaction. This is because liquid sugar is quickly absorbed and digested by the body, unlike the slower digestion of nutrients like proteins or starch and fiber found in solid foods. 

Notably, including fats in a meal contributes to a more extended sense of satiety, as the body takes a longer time to absorb and digest fats than proteins and carbohydrates.

Importantly, the experience of satiety significantly influences subsequent eating patterns, determining both the quantity and timing of the next meal.

Satiety

Hormones and Satiety

Leptin, often referred to as the satiety hormone, plays a crucial role in managing appetite and promoting a sense of fullness. In contrast, ghrelin serves as the hunger signal, prompting your brain to initiate eating. After a meal, ghrelin levels decrease while leptin levels rise. This shift in hormone levels acts as a signaling mechanism, with the increased leptin signaling your brain to decrease appetite and enhance feelings of satiety.

The Genetics of Satiety

Genetics plays a role in regulating energy, metabolism, and body fat and impacts the sensation of fullness after eating.

LEP Gene

The leptin (LEP) gene is important in satiety regulation, with its rare mutations known to cause leptin deficiency and severe obesity. To unravel common loci influencing circulating leptin levels, a Genome-Wide Association Study (GWAS) involving 32,161 individuals was conducted.

Five robustly associated loci (P<5 × 10⁻⁸) emerged, with LEP itself at the forefront, emphasizing its pivotal role. Notably, SLC32A1, GCKR, CCNL1, and FTO also played significant roles, independent of adiposity. While the FTO obesity locus’s association with leptin levels vanished after BMI adjustment, the others maintained their independent influence.

FTO Gene

The FTO gene produces the fat mass and obesity-associated protein. Variations in this gene can heighten hunger and increase energy intake. The rs9939609 SNP in the FTO gene, particularly the AA and TA forms, is linked to impaired satiety responses.

DRD2 Gene

The DRD2 gene codes for the dopamine receptor D2 subtype. Alterations in this gene may reduce the receptor amount, leading to overeating. The SNP rs1800497 in the DRD2 gene, with the T allele as the risk allele, is associated with reduced sensitivity to dopamine, higher body fat, and lower satiety scores.

MC4R Gene

The MC4R gene produces the melanocortin 4 receptor, which signals fullness after a meal. Changes in this gene are linked to obesity. The SNP rs17782313 in the MC4R gene, with the C allele as the risk allele, is associated with a higher risk of obesity, increased calorie intake, and lower satiety scores.

Understanding the genetics of satiety unveils the intricate role that our genes play in regulating satiety, hunger, appetite, energy expenditure, and overall body weight. Genetic variations can influence key components of the satiety signaling pathway, impacting an individual’s susceptibility to overeating, or their ability to maintain a good weight.

Read about the genetics of appetite in more detail in this article.

Non-Genetic Factors Influencing Satiety

Environmental, personal, physiological, and psychological aspects play a crucial role in influencing satiety. Understanding these factors provides valuable insights into the complex interplay that determines how individuals perceive and respond to the feeling of fullness after eating.

Physiological

The gut, a major hormone-producing organ, impacts satiety. Stomach distension signals satiation to the brain via the vagus nerve. Peptides like CCK, neurotensin, and GLP-1 regulate appetite. Ghrelin, released by the stomach, stimulates hunger, while leptin from adipose tissues suppresses it, maintaining energy balance.

Gut Wellness

The interplay between gut microbiota, satiety hormones, and energy intake is well-studied. Modifications in host-bacterial interactions can benefit satiety in insulin-resistant obese individuals. Prebiotics and short-chain fatty acids produced by gut bacteria can enhance satiety signaling.

Sociocultural

Social aspects influence satiety; cultural food patterns and meal size affect satiation. Eating with others can increase energy intake, influenced by the presence of family, friends, or colleagues. Social isolation, poverty, and loneliness also impact appetite. Various factors like socio-economic status, media literacy, and past experiences influence food choices.

Psychological

Satiety is a complex feeling, involving hunger perception, food cravings, and hedonic sensations. Psychological factors, such as feelings of deprivation and the reward value of food, impact appetite. Food acceptance and rejection, conditioned reflexes, and cognitive processes shape eating patterns. Individuals on weight-loss regimens may experience increased cravings and altered CNS responses to calorie-rich foods.

Gender Differences

Gender differences play a role in food intake regulation and appetite control. Women tend to feel easily satisfied with the amount of food they eat, especially when it provides a similar number of calories and is readily available. This satisfaction is influenced by hormonal and neuronal factors, making women generally more easily satiated than men. 

Body composition differences contribute to variable food/energy intake, as women have more body fat and higher leptin levels, promoting satiety.

Leptin secretion increases with higher adiposity in females, inhibiting food intake and increasing energy expenditure. Obese individuals often show leptin resistance. Long-term leptin treatment may lower fat mass and body weight in individuals with slight hyperleptinemia.

Age Differences

Age is a crucial factor affecting the satiating efficiency of foods. Sensory-specific satiety declines with age due to changes in taste and smell discrimination, leading to reduced energy intake in old age.

Elderly individuals may have limited food choices due to the decreased pleasantness of food, posing potential risks. Age-associated changes in sensory-specific satiety contribute to differences in food preferences and intake among various age groups.

Understanding satiety requires considering these multifaceted factors that go beyond genetics and involve the interplay of various elements influencing how individuals perceive and respond to the feeling of fullness after eating.

Harnessing Satiety for Weight Management

In contemporary dietary strategies, satiety emerges as a powerful tool for calorie management and weight control. Understanding its pivotal role in weight management is crucial; satiety allows for the moderation of calorie intake by choosing foods that provide a satisfying experience without an excess of calories, coupled with essential nutrients.

Every food item comes with its own satiety index, dictating the speed at which one feels full compared to others. The satiety index assesses the capacity of popular foods to induce fullness in comparison to white bread. 

White bread is assigned a baseline satiety index of 100 as a reference point for the evaluation. Boiled potatoes claim the top spot with a satiety index of 323, showcasing their remarkable fullness-inducing capacity. Conversely, french fries score 116, highlighting the influence of cooking methods on satiety. 

Foods scoring above 100 are deemed filling, while those below 100 are considered less satisfying.

This index serves as a practical tool for making informed dietary choices, offering insights into how different foods and cooking techniques impact our sense of fullness.

About the LifeDNA Report

LifeDNA’s Nutrition Report delves into the intricacies of your genetic code to unravel why you might experience more intense or only subtle sensations of satiety.

Your unique genetic makeup influences how your body responds to different foods and their impact on satiety. Whether you find yourself easily satisfied or frequently yearning for more food, your genes can provide insights into your body’s reactions to dietary changes.

Whether you aim to control your weight, regulate blood sugar levels, or simply foster overall well-being, LifeDNA’s Nutrition Report can be your roadmap to a more satiated you.

Start your journey to personalized well-being today!

Summary

  • Vitamin D, known as the “sunshine vitamin,” is crucial for calcium and phosphorus absorption, supporting the bones. Additionally, it exhibits potential benefits in immune function and cancer cell growth inhibition.
  • Vitamin D is essential for preventing bone-related conditions such as rickets and osteomalacia. It also plays a role in supporting immune function, potentially reducing the risk of autoimmune conditions.
  • Key genes, including GC, NADSYN1/DHCR7, CYP2R1, and CYP24A1, influence vitamin D regulation. Variants in these genes provide insights into the genetic determinants of vitamin D levels.
  • Sun exposure, influenced by geographical location and atmospheric conditions, along with factors such as clothing, sunscreen, skin pigmentation, age, and obesity, impacts vitamin D synthesis and metabolism.
  • Achieving optimal vitamin D levels involves balancing sun exposure, dietary sources such as fatty fish and fortified foods, and, when necessary, supplementation. Consideration of individual factors such as genetics, skin color, season, and conditions is crucial for personalized strategies.

References

  1. https://pubmed.ncbi.nlm.nih.gov/26394262/
  2. https://www.ncbi.nlm.nih.gov/books/NBK537038/
  3. https://sciencedirect.com/science/article/pii/S0002916523266204?via%3Dihub
  4. https://pubmed.ncbi.nlm.nih.gov/18583465/
  5. https://www.genecards.org/cgi-bin/carddisp.pl?gene=DRD2
  6. https://pubmed.ncbi.nlm.nih.gov/28241982/
  7. https://www.genecards.org/cgi-bin/carddisp.pl?gene=MC4R
  8. https://pubmed.ncbi.nlm.nih.gov/24458996/
  9. https://www.frontiersin.org/articles/10.3389/fnut.2022.1002619/full
  10. https://www.frontiersin.org/articles/10.3389/fnut.2022.1002619/full
  11. https://www.frontiersin.org/articles/10.3389/fnut.2022.1002619/full
  12. https://www.frontiersin.org/articles/10.3389/fnut.2022.1002619/full
  13. https://www.frontiersin.org/articles/10.3389/fnut.2022.1002619/full
  14. https://www.frontiersin.org/articles/10.3389/fnut.2022.1002619/full
  15. https://pubmed.ncbi.nlm.nih.gov/8424853/
  16. https://pubmed.ncbi.nlm.nih.gov/25159561/
  17. https://pubmed.ncbi.nlm.nih.gov/7498104/

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

New Study: How Well Can Genetics Predict Potential Likelihood Of Obesity?

Latest Posts

Table of Contents

New Study: How Well Can Genetics Predict Risk Of Obesity?

Date of Content:  November 22, 2023
Written by: Avanthika Nityanand
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

What Are Twin Studies?

Twin studies are a type of genetic research that compares the similarity of traits and behaviors between monozygotic (identical) twins, who share 100% of their genomes, and dizygotic (fraternal) twins, who share about 50% of their gene sequences, to understand the influence of genetics versus environment on various characteristics.

Twin studies are a highly effective tool in estimating heritability, the proportion of variation in a trait attributable to genetic factors within a population. The effectiveness of twin studies in predicting heritability lies in several key aspects:

  1. Comparison of Monozygotic and Dizygotic Twins: By comparing similarities in traits between these two types of twins, researchers can estimate the extent to which genetics influences these traits.
  2. Shared vs. Non-shared Environment: Twin studies allow researchers to separate the effects of genetics from the environment. Both types of twins usually share a common environment during early life. Differences in traits between monozygotic twins can often be attributed to non-shared environmental factors or unique experiences since their genetic makeup is identical.
  3. Heritability Estimation: The more prominent similarity in a trait observed among monozygotic twins compared to dizygotic twins suggests a genetic influence. Heritability is estimated based on the degree of trait similarity (concordance) between twins.
  4. Broad Applications: Researchers use twin studies to investigate the heritability of various attributes and conditions, including physical traits, diseases, and behavioral characteristics.
  5. Control for Confounding Variables: Twin studies often control for age, upbringing, and socio-economic status, which might otherwise confound results in other genetic studies.

We will discuss twin studies and their immense value in genetics in a more detailed article in the future.

BMI Obesity

What Is A Polygenic Risk Score (PRS)?

A polygenic risk score is a numerical value that quantifies an individual’s genetic susceptibility to a particular trait or disease based on the combined effect of multiple genetic variants. We calculate this score by summing the effects of various single nucleotide polymorphisms (SNPs), each contributing to a small increase or decrease in the susceptibility of the trait or disease.

A polygenic risk score estimates an individual’s predisposition based on their unique genetic makeup, aiding in risk assessment, personalized medicine, and understanding the genetic basis of complex diseases and traits. In a future article, we will go into more detail about this valuable genetic tool.

Why Are Twin Studies On Obesity Important?

Obesity has tripled worldwide since 1975. This rise in obesity is multifactorial, resulting from a complex mix of multiple genetic factors, epigenetic influences, and environmental conditions.

Twin studies have been instrumental in understanding obesity, revealing that genetic factors account for up to 80% of the body mass index (BMI) differences in young adulthood. Genome-wide association studies have identified numerous genetic variants associated with BMI. These variants, known as SNPs, contribute to calculating a polygenic risk score for BMI, offering a personalized gauge of genetic susceptibility to obesity.

In studying obesity, monozygotic (MZ) twins with nearly identical genetic sequences provide a unique opportunity to investigate the impact of genetic factors versus environmental factors on BMI. Comparatively, dizygotic (DZ) twins share about 50% of their segregating genomic segments. When raised together, MZ and DZ twins experience similar environmental influences, allowing for a comparative analysis of genetic and environmental contributions to BMI. 

Several previous studies have examined MZ and DZ twins with significant differences in BMI

However, these studies were cross-sectional and varied in their definitions of extensive intrapair BMI differences without fully considering genetic predisposition.

In contrast, a longitudinal study is a research design that involves repeated observations of the same variables (such as people, groups, or data) over several years to even decades.

Summary of a Recent Study on Obesity Genetics

A longitudinal study published in November 2023 aimed to explore the long-term BMI trajectories over 36 years in twins. It focused mainly on those whose BMI in young adulthood was either below, within, or above the range predicted by their genetic profile. Twin pairs exhibiting large BMI differences, a within-pair BMI difference of 3 kg/m² or more, were given special attention.

Involving a cohort (group of individuals who share a defining characteristic or experience within a defined period) of 3,227 like-sexed twin pairs, of which 34% were monozygotic, the study commenced in 1975 when the participants were approximately 30 years old. It continued with follow-ups in 1981, 1990, and 2011. The BMI observed in 1975 was categorized as within (±2.0), below (<−2.0), or above (>+2.0) the genetically predicted BMI. They based this prediction on a polygenic risk score (PRS) derived from 996,919 SNPs.

The results revealed that in both monozygotic and dizygotic twin pairs with significant intrapair BMI differences, the twin with a higher BMI in 1975 more frequently had a BMI above the genetically predicted value, compared to the twin with a lower BMI who more often fell below the range. By 2011, those below, within, and above their predicted BMI in 1975 had typically reached regular weight, overweight, and obesity status, respectively.

From these findings, the study concluded that classifying individuals’ BMI as below, within, or above their genetically predicted BMI, using a polygenic risk score, is beneficial in identifying those who are either resistant or susceptible to weight gain. This classification could offer new insights into the factors contributing to and the consequences of obesity, enhancing our understanding of this complex health issue.

Why Is This Study Important?

These findings could potentially redirect the course of obesity research. By categorizing an individual’s BMI as below, within, or above their genetic predisposition to BMI, researchers can now investigate separately those who are either resistant or susceptible to weight gain.

This approach offers a valuable new perspective in understanding the cause and development of obesity, focusing on individual variations in response to genetic predispositions. This nuanced understanding could be crucial in developing more targeted and effective interventions for obesity prevention and treatment.

References

  1. https://onlinelibrary.wiley.com/doi/10.1002/oby.23906
  2. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962159/
  4. https://onlinelibrary.wiley.com/servlet/linkout?suffix=null&dbid=8&doi=10.1002%2Foby.23906&key=31466550&getFTLinkType=true&doiForPubOfPage=10.1002%2Foby.23906&refDoi=10.1017%2Fthg.2019.43&linkType=PMID&linkSource=FULL_TEXT&linkLocation=Reference

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

* LifeDNA is not associated with the above company. 

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

Unraveling The Genetics Of Sweet Preference

Latest Posts

Table of Contents

Unraveling The Genetics Of Sweet Preference

Date of Content:  November 21, 2023
Written by: Avanthika Nityanand
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

Overview

Humans perceive sweet taste through a specialized and complex process that involves taste receptors, taste buds, and signal transmission to the brain.

Sugar Preference

The Sweet Receptor

Sweet taste perception starts in the taste buds, sensory cell clusters on the tongue. Each taste bud contains several taste receptor cells. The key receptors for sweet taste are the G protein-coupled receptors, specifically the TAS1R2 (T1R2) and TAS1R3 (T1R3) subunits, which form the sweet receptor. These receptors are sensitive to various sweet substances, including sugars (like glucose and fructose), artificial sweeteners, and some amino acids.

When you eat something sweet, it binds to the TAS1R2 and TAS1R3 receptor complex. This binding triggers a series of cellular events within the taste receptor cells. Once the sweet molecule binds to its receptor, it activates a G protein called gustducin. This activation leads to a cascade of intracellular events that result in the release of neurotransmitters. These events involve changes in cellular ion channels, leading to the depolarization of the taste cell.

The neurotransmitters released from the taste cells stimulate sensory nerve fibers, which send signals to the brain, particularly to the gustatory cortex responsible for processing taste information. Once these signals reach the brain, it interprets them as a sweet taste. Individual genetic differences can influence this perception, which explains why some people have a stronger preference or sensitivity to sweet tastes than others.

It is also important to note that the perception of sweetness is not just a simple signal from the tongue to the brain. It often involves integration with other senses, especially smell, which can significantly enhance or alter the perception of sweetness.

The understanding of sweet taste perception is crucial in many fields, including nutrition, food science, and medicine, particularly in understanding and managing conditions like diabetes and obesity, where the regulation of sugar intake is vital.

Evolutionary Significance

The evolutionary significance of sweet taste perception lies in its role as a mechanism for survival and adaptation in humans and other animals. Sweetness typically indicates the presence of sugars, a primary and efficient energy source. In the natural environment, especially for early humans and other animals, finding foods rich in sugars was crucial for survival. The ability to detect and prefer sweet tastes helped individuals identify and consume energy-rich foods, especially when food sources were scarce or unpredictable.

Sweet taste is often associated with the ripeness of fruits and other plant foods. Ripe fruits are more energy-dense and generally safer than unripe or overripe fruits, which might be toxic or less nutritious. Therefore, the preference for sweet taste helped early humans to select the most beneficial and least harmful foods.

As humans evolved and spread across different environments, the ability to perceive and enjoy sweet tastes might have played a role in dietary diversification. It allowed early humans to explore and incorporate various new foods into their diets, contributing to their adaptability and survival in diverse habitats.

Breast milk is naturally sweet, which helps in attracting infants to it, ensuring they receive adequate nutrition for growth and development. This innate preference for sweetness helps infants to accept and prefer their mother’s milk or milk substitutes for primary nutrition.

Current Health Challenges

In modern times, the evolutionary preference for sweet tastes poses health challenges. With the widespread availability of artificially sweetened foods and high-sugar food items, this once-beneficial trait can contribute to health issues such as obesity, diabetes, and other metabolic disorders. It represents a case of an evolutionary advantage that, due to changes in environment and lifestyle, has become a disadvantage in the context of modern health.

Genetics Of Sweet Taste Preference

Heritability

In a study investigating the hereditary aspects of sweet taste preference, researchers focused on a Finnish cohort comprising 146 subjects from 26 families, including a mix of men (32%) and women (68%) ranging in age from 18 to 78 years. Additionally, they provided information about their liking and frequency of consumption of various sweet foods such as chocolate, candy, ice cream, sweet desserts, and pastries. They also completed a questionnaire assessing their craving for sweet foods.

The results revealed significant heritability in several sweet taste perception and preference aspects. The pleasantness rating of the most potent sucrose solution (18.75%) and the intensity rating of PROP showed high heritability estimates of 41% and 66%, respectively. Furthermore, the study found that the overall pleasantness and consumption frequency of sweet foods and the craving for these foods also exhibited considerable heritability (40%, 50%, and 31%, respectively).

Current Research

In 2019, researchers conducted a GWAS on sweet taste perception across three independent samples, all of European ancestry. The first sample consisted of 1757 Australian adolescents, where the perceived intensity of two sugars (glucose and fructose) and two high-potency sweeteners (neohesperidin dihydrochalcone and aspartame) was analyzed. The second sample included 686 U.S. adults, focusing on sucrose’s perceived intensity, sweetness, and preference. The third sample, from the UK Biobank, comprised 174,424 white-British individuals. The study examined the intake of total sugars and sweets.

The findings revealed a strong association between total sugar intake and a single nucleotide polymorphism (SNP) within the FTO gene on chromosome 16. Additionally, the research identified many suggestive associations for each sweet perception and intake phenotype. These results supported the idea that the brain plays a significant role in the perception of sweet taste and sugar intake.

A 2020 GWAS on a large cohort of 12,312 Japanese individuals revealed a significant association between the 12q24 locus and the sweet taste preference. A key finding was the lead variant, rs671, located in the aldehyde dehydrogenase (ALDH2) gene, which is known for its role in alcohol metabolism. This variant is unique in its expression as it is monoallelic (when only one allele is expressed; the other allele is silenced or not expressed) in non-East Asian populations.

A 2021 exploratory GWAS indicated several SNPs associated with sweet taste preference. It included a lead SNP (rs2091718) in the PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) gene, where its minor allele correlated with a lower preference for sweet taste. The PTPRN2 gene also emerged as a top-ranked gene in the gene-based GWAS analysis.

Section Summary

In a series of GWAS conducted between 2019 and 2022, researchers explored the genetic basis of sweet taste perception and preference across different populations. These studies collectively enhance understanding of the genetic factors underlying sweet taste perception and preference.

Non-Genetic Factors Affecting Sweet Taste Preference

Non-genetic factors influencing an individual’s preference for sugary foods are multifaceted and involve environmental, psychological, and physiological elements. Understanding these factors is vital as they can significantly impact dietary choices and health outcomes. Here are some critical non-genetic factors affecting preference for sugary foods:

Cultural and Social Influences: Cultural norms and practices significantly help shape food preferences, including liking sugary items. Social factors such as family eating habits, societal norms, and availability influence these preferences. For instance, in cultures where sweet foods are a staple or often used in celebrations, individuals might develop a stronger preference for them.

Early Life Exposure: We form our taste preferences during infancy and childhood. Early exposure to sugary food items can lead to a preference for such tastes later in life. Breastfeeding patterns, the timing of introducing solid foods, and the variety of foods offered during early childhood can all influence this.

Emotional and Psychological Factors: Emotional states like stress, sadness, or even happiness can influence food choices, often leading to increased consumption of sugary foods due to their comforting or rewarding nature. Additionally, psychological factors such as food reward sensitivity, eating disorders, and habitual behaviors can also play a role.

Economic Factors: Socioeconomic status can influence food preferences and choices. For instance, in some settings, high-calorie, sugar-rich foods are more affordable and accessible than healthier options, leading to higher consumption among lower-income groups.

Advertising: Exposure to food advertising, especially for sugary products, can significantly influence preferences and consumption patterns, particularly among children and adolescents.

Education: Awareness and education about nutrition and health can influence food choices. Individuals with higher nutrition literacy might be more likely to understand the health implications of consuming sugary foods and thus moderate their intake.

Physiological Factors: Physiological factors include individual differences in taste perception not attributed to genetic factors, such as variations in taste bud sensitivity due to age or health conditions. Additionally, hormonal changes can affect taste preferences and cravings for sugary foods.

Habit and Convenience: Lifestyle and daily routines can influence food preferences. For instance, a busy lifestyle and sleep deprivation might lead to increased consumption of convenient, often sugar-rich, processed foods.

Section Summary

While genetics play a crucial role in determining sweet taste preferences and the liking for sugary taste, these non-genetic factors are equally significant in shaping dietary habits and preferences. They offer potential intervention points for nutritional education and public health strategies to reduce excessive sugar consumption.

Healthy Ways To Satisfy Sweet Cravings

Satisfying sweet cravings in a healthy way involves choosing options low in added sugars, artificial sweeteners, and unhealthy fats. Ideally, a sweet food item, if preferred, must also contribute beneficial nutrients to your diet. Here are some healthy ways to satisfy your sweet tooth:

  1. Fresh Fruit: Nature’s candy is fruit. It is naturally sweet and provides vitamins, minerals, and fiber. Berries, apples, pears, or tropical fruits like mango and pineapple are great choices.
  2. Dark Chocolate: A piece of dark chocolate, especially at least 70% cocoa, can be a rich, satisfying way to quell a sweet craving with the added benefit of antioxidants.
  3. Greek Yogurt with Honey or Fruit: Greek yogurt is high in protein and lower in sugar than regular yogurt. Adding a bit of honey or fresh fruit can make it a deliciously sweet and healthy treat.
  4. Smoothies: Blending fruits like bananas, berries, or peaches with ice, yogurt, or milk (dairy or plant-based) can create a sweet, nutritious smoothie.
  5. Homemade Trail Mix: Combine nuts, seeds, and a small amount of dried fruit or dark chocolate chips for a satisfying, nutrient-rich snack.
  6. Baked Fruit: Baking fruits like apples or pears with a sprinkle of cinnamon can bring out their natural sweetness.
  7. Nut Butter: Spread almond or peanut butter on whole-grain toast or apple slices for a satisfyingly sweet and savory combination.
  8. Healthy Baking Substitutes: When baking, use healthier substitutes such as apple sauce, mashed bananas, or dates instead of sugar to sweeten your recipes.
  9. Frozen Grapes or Banana Slices: These can taste like bite-sized popsicles and are refreshing.
  10. Oatmeal: Sweeten your oatmeal with fruits, cinnamon, or a drizzle of honey instead of sugar.

Remember, moderation is vital, even with the healthier options. These alternatives are much better than high-sugar, high-fat sweets. But enjoy them in sensible portions.

About The LifeDNA Nutrition Report

Do you have a higher genetic likelihood for lactose intolerance or gluten sensitivity, or how well does your body metabolize caffeine? The Nutrition Report from LifeDNA offers genetically tailored nutrition insights that can help optimize your wellness. The report delves into your genetic predispositions to food intolerances and provides dietary recommendations for macro and micronutrients. 

The LifeDNA Nutrition report includes a specific analysis of Sugar Preference and preference for Sugary Drink Consumption. Get yours here.

References

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

A Quick Guide To Understanding Food Intolerances

Latest Posts

Table of Contents

A Quick Guide To Understanding Food Intolerances

Date of Content:  November 23, 2023
Written by: Avanthika Nityanand
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

Overview

What is Food Intolerance?

Food intolerance refers to difficulty in digesting certain foods, which can lead to uncomfortable gastrointestinal symptoms. Unlike food allergies, which involve the immune system and can be life-threatening, food intolerances generally result in less severe reactions that affect digestion.

Common symptoms of food intolerance include bloating, gas, diarrhea, constipation, cramping, and headaches. These symptoms often occur several hours after consuming the offending food. Some of the common intolerances are lactose (found in dairy), gluten (present in wheat and other grains), and histamine (in certain fermented foods). Unlike allergies, which start due to the consumption of tiny amounts of the allergen, food intolerances often depend on the quantity consumed and can vary over time.

Food Intolerances

How To Test For Food Intolerance?

Testing for food intolerance typically involves elimination diets and symptom tracking. An elimination diet requires removing suspected foods from the diet for a certain period, usually a few weeks, and then gradually reintroducing them while monitoring for symptoms. If symptoms reappear upon reintroducing a food, it might indicate an intolerance.

Additionally, specific medical tests can assist in identifying intolerances, such as lactose intolerance tests, breath tests for fructose malabsorption, and blood tests for celiac disease (which is an immune reaction to gluten but often grouped with food intolerances). However, it is essential to note that many commercial food intolerance tests that are available online lack scientific validation.

Can a Gastroenterologist Test for Food Intolerance?

A gastroenterologist can test for certain types of food intolerances. For example, they can administer breath tests to diagnose lactose or fructose intolerance and perform endoscopic procedures to diagnose conditions like celiac disease. However, for many food intolerances, there are no reliable clinical tests. So, a gastroenterologist may primarily focus on ruling out other gastrointestinal conditions and recommend dietary strategies for identifying intolerances.

What Happens if You Keep Eating Foods You are Intolerant to?

Consistently consuming food you are intolerant to can lead to chronic symptoms like diarrhea, constipation, and bloating. It can impact your overall quality of life. In some cases, it may also cause inflammation and irritation in the digestive system, potentially leading to more severe health issues, such as nutrient deficiencies or worsened gastrointestinal disorders.

What is The Difference Between Food Allergy and Food Intolerance?

Food allergies and food intolerances are often confused. But they are different. A food allergy triggers an immune system response that can affect multiple organs and be life-threatening (via anaphylaxis). In contrast, food intolerance is generally limited to digestive problems and is not life-threatening. Food allergies can start due to a tiny amount of the allergen and can develop at any age, whereas food intolerances often depend on the dose and may vary over time.

Can You Develop Food Intolerance Later in Life?

Yes, you can develop food intolerances later in life. It can be due to changes in your digestive system, such as a decrease in certain digestive enzymes (like lactase, which breaks down lactose). Age, changes in gut bacteria, and certain gastrointestinal diseases can also lead to the development of food intolerances.

Types Of Food Intolerances

Food intolerances come in various forms, each characterized by the inability to digest or react appropriately to specific food components. Unlike food allergies, which involve an immune response and can be severe or life-threatening, food intolerances typically cause uncomfortable digestive symptoms. Here are several common types:

  • Lactose Intolerance
  • Gluten Sensitivity
  • Hereditary Fructose Intolerance
  • Histamine Intolerance
  • FODMAP Intolerance
  • Additive Sensitivity
  • Amine Intolerance
  • Salicylate Sensitivity
  • Carbohydrate Intolerance
  • Alcohol Intolerance

Genetics Of Food Intolerances

Lactose Intolerance

Lactose intolerance is due to lactase deficiency.  Lactase is an enzyme needed to digest lactose, the sugar in milk and dairy products. Symptoms include bloating, gas, diarrhea, and abdominal pain.

The critical genetic aspect of lactose intolerance revolves around lactase persistence and non-persistence. Lactase persistence refers to the continued activity of the lactase enzyme into adulthood, allowing for the digestion of lactose.

Lactase non-persistence leads to lactose intolerance. The LCT gene encodes the lactase enzyme, and variations in this gene, particularly in the regulatory region upstream of the LCT gene, regulate lactase expression. The persistence or non-persistence trait depends on which alleles (gene variants) one inherits.

We have gone into much more detail about this gene and several other genes in our article, “Genetics of Lactose Intolerance.” You can read it here.

What Foods To Avoid if You Are Lactose Intolerant?

If you are lactose intolerant, it is essential to avoid foods containing lactose. It primarily includes dairy products like milk, cheese, yogurt, and ice cream. Some processed foods may also contain lactose as an additive, so reading labels is crucial. Lactase enzyme supplements are available to help digest lactose and may allow for small amounts of dairy in the diet.

Gluten Sensitivity

Non-celiac gluten sensitivity is different from celiac disease (an autoimmune disorder). Non-celiac gluten sensitivity causes bloating, abdominal discomfort, and fatigue due to consumption of gluten. Gluten is a protein found in wheat, barley, and rye.

While not as strongly genetically linked as in celiac disease, specific human leukocyte antigen (HLA) genes may play a role in gluten sensitivity. These genes are involved in immune system regulation and could contribute to our reaction to gluten. 

Hereditary Fructose Intolerance

Hereditary Fructose Intolerance (HFI) is a severe genetic disorder affecting the body’s ability to metabolize fructose, a sugar found in fruits, some vegetables, and honey. HFI follows an autosomal recessive pattern of inheritance.

In cases where both parents are carriers of a pathogenic ALDOB gene variant (heterozygous), there is a 25% chance that a child will have HFI, a 50% chance of being an asymptomatic carrier (having one pathogenic variant), and a 25% chance of not inheriting any pathogenic variant from the parents. It means that while each child has a risk of developing HFI, they also may be a carrier or completely unaffected genetically.

Histamine Intolerance

It occurs when the body cannot break down histamine, a compound in aged and fermented foods. It gives way to symptoms such as headaches, hives, digestive issues, and a runny nose.

The genetics of histamine intolerance are complex and involve multiple genes that influence the body’s ability to metabolize and respond to histamine. A few genes are responsible for producing enzymes involved in histamine metabolism.

For example, diamine oxidase (DAO), an enzyme synthesized in the intestines, helps metabolize histamine in foods. The AOC1 gene influences its production. Variations within the AOC1 gene can lead to differences in DAO production levels, affecting the efficiency of the enzyme in breaking down histamine.

FODMAP Intolerance

FODMAPs (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols) are specific carbohydrates in some fruits, vegetables, grains, and dairy products. People with IBS (Irritable Bowel Syndrome) often find relief by following a low-FODMAP diet.

While no specific gene causes FODMAP intolerance, it may influence an individual’s susceptibility to IBS and similar gastrointestinal conditions, which affects how one tolerates FODMAPs. 

Twin and family studies have shown that IBS has a heritable component, with heritability estimates ranging from 0 to 57%. A notable study by the Mayo Clinic involving sequencing of the SCN5A gene in 584 IBS patients and 1,380 controls revealed that 2.2% of IBS patients had functionally harmful mutations in the SCN5A gene, which were absent in controls. This gene encodes the NaV1.5 ion channel crucial for gut function. The mutations, mainly resulting in loss of function and often linked to constipation-predominant IBS, highlight the genetic basis of IBS.

A severe case of IBS-C, with an SCN5A loss-of-function mutation, was effectively treated with mexiletine, which is a drug that restores NaV1.5 channel function. These findings suggest that both rare mutations and common variants could contribute to IBS. However, more large-scale genetic research on IBS is needed to uncover more genetic factors.

Alcohol Intolerance

Alcohol intolerance happens due to a genetic condition where the body cannot break down alcohol efficiently, leading to flushing, nausea, and rapid heartbeat.

Alcohol intolerance is predominantly influenced by genetic factors, particularly by variations in enzymes involved in alcohol breakdown. The key enzymes (entities that help speed up chemical reactions) are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH).

Genetic variations, especially in the ALDH2 gene, can lead to an inefficient breakdown of acetaldehyde, a toxic byproduct of alcohol metabolism. This inefficiency, associated with certain genetic variants,  is prevalent in East Asian populations and results in symptoms like flushing, nausea, and rapid heartbeat after alcohol consumption.

Can Genetic Testing Predict Food Intolerances?

Genetic testing for food intolerances involves analyzing specific genes that influence the body’s ability to process and tolerate certain foods. This type of testing can be helpful for conditions with a known genetic basis, such as lactose intolerance and alcohol intolerance. In the case of lactose intolerance, testing can identify variants in the LCT gene responsible for lactase enzyme production.

However, it is essential to note that the genetic component for many food intolerances is complex and not fully understood, making genetic testing less definitive. We should interpret the test results cautiously and in conjunction with clinical assessments and dietary trials.

Non-Genetic Factors Influencing Food Intolerance

Non-genetic factors play a significant role in the development and severity of food intolerances. These factors include:

  • Gut Microbiome: The composition of gut bacteria can influence the digestion and absorption of certain foods. Imbalances in the gut microbiota may exacerbate food intolerances.
  • Enzyme Deficiencies: Deficiencies in digestive enzymes, not caused by genetic factors, can lead to intolerances. For example, temporary lactase deficiency can occur due to a gastrointestinal infection.
  • Age: The body’s ability to digest certain foods can change due to age. It often leads to increased food intolerances in older adults.
  • Dietary Habits: Frequent consumption of certain foods can sometimes overwhelm the digestive system, leading to intolerance.
  • Gastrointestinal Diseases: Conditions like IBS can affect how the body processes certain foods, leading to intolerances.
  • Stress and Psychological Factors: Stress and emotional well-being can impact gut health and digestion, potentially contributing to food intolerances.
  • Food Processing and Additives: Certain food processing methods and additives can make foods difficult to digest or trigger intolerances.
  • Environmental Factors: Factors like pollution and exposure to toxins can impact gut health and digestion.

References

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.

The Genetics of Bitter Taste Perception

Latest Posts

Table of Contents

The Genetics of Bitter Taste Perception

Date of Content: October 18, 2023
Written by: Avanthika Nityanand
Reviewed by: Maarit Tiirikainen, PhD

Facebook
Twitter
LinkedIn

Why Do Some Foods Taste Bitter?

Bitterness is one of the five basic tastes, along with sweet, salty, sour, and umami. Evolutionarily, the bitter taste perception helped humans detect potentially harmful substances in food. Many toxic substances in nature taste bitter, so detecting bitterness was a protective mechanism against consuming something poisonous.

Bitter Taste

What is PTC?

Phenylthiocarbamide (PTC) is a chemical that tastes either very bitter or virtually tasteless, depending on the individual. Arthur Fox, a DuPont lab chemist, discovered it by accident in the 1930s. Since then, it has been researched primarily to understand genetic variations in taste perception. PTC is not found in foods, but the ability to taste it (or not) is a commonly used measure to understand genetic variability in bitter taste perception.

Do Some People Perceive Bitterness More Than Others?

Bitter taste perception varies among individuals. Some people are sensitive to bitter compounds, while others may find the same foods milder or tasteless. These differences can be due to several factors, including the number and type of individual taste buds and genetic factors.

Is Bitter Taste Perception Genetic?

Genetic factors play a significant role in bitter taste perception. Twin studies, family analyses, and population research have demonstrated that the inability to taste PTC is passed down in a manner closely resembling Mendelian recessive inheritance.

Molecular Basis Of Bitter Taste Perception

The molecular basis of bitter taste perception is a complex process that involves the interaction between bitter compounds and specific taste receptors on the tongue. These taste receptors are part of a family known as G protein-coupled receptors (GPCRs).

When a bitter compound enters the mouth, it binds to specific receptors on the tongue known as TAS2Rs, or taste receptor type 2. Humans have approximately 25 distinct TAS2R receptors, each sensitive to a diverse range of bitter compounds. When a bitter compound binds to a TAS2R receptor, it activates a cascade of events inside the cell that lead to the perception of bitterness.

One of the key components in this process is the G protein, which is activated when the bitter compound binds to the TAS2R receptor. The activated G protein then stimulates a series of downstream signaling pathways, leading to an increase in calcium levels inside the cell. This increase in calcium then triggers the release of neurotransmitters, which send a signal to the brain indicating the bitter taste.

In addition to the TAS2R receptors, other molecules are also involved in perceiving bitterness, including ion channels and other receptors. These molecules contribute to the complexity of bitter taste perception and help to fine-tune the response to different bitter compounds.

TAS2R38 and CA6

The group of various TAS2R receptors plays a significant role in the perception of bitter taste. Consequently, the gene encoding one of the receptors, TAS2R38, became a candidate for genetic association studies.

The TAS2R38 a gene is located on chromosome 7 in humans. The protein produced by the TAS2R38 gene is located on the surface of taste receptor cells in the taste buds, primarily on the tongue. When bitter compounds, such as PTC (phenylthiocarbamide) or PROP (6-n-propylthiouracil), bind to this receptor, it leads to a series of reactions in the cell that results in the perception of a bitter taste.

Taste sensitivity plays a pivotal role as a biological factor in determining food preferences. There are three notable SNPs within the TAS2R38 gene: rs713598, rs1726866, and rs10246939. These SNPs form two prevalent haplotypes, PAV and AVI. Additionally, an SNP found in the CA6 gene, rs2274333, responsible for producing carbonic anhydrase VI (CA6), has been linked to the perception of bitterness. The consumption level of bitter foods might have implications for specific health results. 

In a study involving a group of 118 Polish women aged over 60, researchers investigated the relationships between the TAS2R38 diplotype, CA6 genotype, and the consumption of bitter-tasting foods. A food frequency questionnaire determined the consumption patterns of bitter foods such as Brassica vegetables (e.g., cabbage), grapefruit, and coffee. Those with the AVI/AVI genotype consumed coffee more regularly than the PAV/PAV homozygotes. Similarly, the A allele carriers of CA6 drank coffee more often than the GG homozygotes. Also, carriers of the PAV haplotype of TAS2R38 and the A allele of CA6 chose white cabbage more frequently.

Find out your genetic predisposition to Bitter Taste Perception from LifeDNA’s Nutrition Report’s  “Sensitivity to Bitter Food” trait. 

Are Bitter Foods Beneficial?

Bitter foods have several intriguing benefits.

Digestive Health: Bitter foods are known to stimulate the production of digestive enzymes. This can aid in the breakdown of food and the absorption of nutrients, promoting better digestion.

Liver Detoxification: Some bitter foods, like dandelion greens and artichokes, support liver function and detoxification. They can help increase bile flow, a necessity for digesting fats and removing waste products from the body.

Rich in Nutrients: Many bitter foods, especially green leafy vegetables like kale, contain vitamins, minerals, and antioxidants. These nutrients can boost overall health and protect against various diseases.

Appetite Regulation: Bitter foods can help regulate appetite by reducing hunger hormone levels. This might be beneficial for weight management.

<You May Also Like: The Genetics of Appetite>

Anti-inflammatory Properties: Some bitter foods have anti-inflammatory properties. For instance, the compound sulforaphane found in broccoli can combat inflammation.

Blood Sugar Regulation: Bitter melon, in particular, is known for its ability to help regulate blood sugar levels, making it beneficial for people with diabetes or those at risk of developing the condition.

<You May Also Like: The Genetics of Carbohydrate Metabolism>

Promote Heart Health: Foods like dark chocolate, which can taste bitter, are rich in flavonoids that may support heart health by improving blood flow and reducing blood pressure.

While bitter foods come with various health benefits, it’s essential to consume them as part of a balanced diet and not in excess. Some extremely bitter foods or compounds might be harmful in large amounts or even in lesser amounts for a few individuals. As always, it is a good idea to consult with a nutritionist or a  healthcare professional before significantly changing the diet.

Interesting Ways to Enjoy Healthy Bitter Foods

Eating bitter foods can be challenging if you are particularly averse to the bitter taste. Yet, they are packed with essential nutrients and health benefits, making them a desirable addition to a well-rounded diet. If you want to incorporate more bitter foods into your meals without compromising on flavor, here are some attractive ways to enjoy them:

Smoothies: Add bitter greens like kale, arugula, or dandelion greens to your morning smoothie. Combine them with sweet fruits like mango, banana, or berries to mask the bitterness.

Grilled Brussels Sprouts: Grilling can transform the taste of these bitter veggies. Toss Brussels sprouts in olive oil, salt, and pepper and grill them until they are slightly charred. The caramelization reduces their bitter flavor.

Bitter Melon Stir-Fry: Bitter melon can be pretty sharp, but when stir-fried with soy sauce, honey, and other veggies, its bitterness becomes more palatable.

Roasted Radicchio Salad: Roasting radicchio softens its bitter profile. Combine with goat cheese, walnuts, and a balsamic reduction for a delightful salad.

Dark Chocolate and Nuts: Dark chocolate can be bitter but is also rich in antioxidants. Pair it with almonds or walnuts for a balanced, nutrient-dense snack.

Endive Cups: Use raw endive leaves as cups and fill them with tasty fillings like hummus, guacamole, or a mixture of roasted vegetables.

Homemade Herbal Teas: Brew your tea using bitter herbs like dandelion root, burdock, or chamomile. Add a dash of honey or lemon to enhance the non-bitter flavors.

Bitter Greens Pesto: Switch up your regular basil pesto by using bitter greens like mustard greens or kale. Adding garlic, nuts, and cheese will help balance the bitterness.

Kale Chips: Toss kale leaves with olive oil and your choice of seasoning, then bake until crispy. They make a great alternative to regular potato chips.

Bitter Gourd Pickles: In many cultures, bitter gourd (or bitter melon) is pickled with spices, reducing its bitterness and making it a tangy accompaniment to meals.

Incorporate into Soups: Adding chopped bitter greens to hearty soups can mellow out their flavor. Think lentil soup with chopped kale or broccoli and arugula soup.

Dandelion Green Pizzas: Use dandelion greens as a topping for your pizza. Pair them with creamy cheeses or savory meats to counteract the bitter taste.

Pair with Fats: Bitter foods go well with fatty foods. For instance, a kale salad with avocado slices or roasted Brussels sprouts with bacon.

Bitter Food Wraps: Use large collard green leaves as wraps, filling them with grilled chicken, veggies, and a tangy sauce.

Tonic Drinks: Incorporate bitter roots and herbs into tonic drinks or mocktails. They can be both refreshing and beneficial for digestion.

Summary

Bitterness is a natural taste sensation that acts as a protective mechanism against potentially harmful substances. While the perception of bitterness varies among individuals, primarily due to genetic factors, there are numerous ways to enjoy and incorporate healthy bitter foods into one’s diet. Embracing the full spectrum of tastes, including bitterness, can lead to a richer culinary experience and a better-balanced diet.

References

Customer Reviews

Christopher Devlin
Christopher Devlin
LifeDNA Customer
Read More
I am so impressed with this service. I have even discussed these recommendations with my health care providers and they are all impressed too! I can’t compare it with other services as I have only tried this but I recommend. Also I think I pulled my genetics in from ancestry too which was super convenient.
Lei'a
Lei'a
LifeDNA Customer
Read More
Great source of information I was looking for a platform to make use of my existing raw data from Ancestry. I’m glad I found LifeDNA. I originally took a DNA test to learn about my roots and it’s great to know that my DNA could also play a big role in my health, diet, and even my skin. Overall, all the reports are incredible.
Shiraz Dole
Shiraz Dole
LifeDNA Customer
Read More
It is crazy how I felt that I had a strong understanding of my bodies needs, but after having my DNA analyzed by the LifeDNA team, I realized that there was so much I still did not know.
Doc Sheila Lim
Doc Sheila Lim
LifeDNA Customer
Read More
I got some pretty useful insight that helped me with my diet.
Previous
Next

*Understanding your genetics can offer valuable insights into your well-being, but it is not deterministic. Your traits can be influenced by the complex interplay involving nature, lifestyle, family history, and others.

Our reports have not been evaluated by the Food and Drug Administration. The contents on our website and our reports are for informational purposes only, and are not intended to diagnose any medical condition, replace the advice of a healthcare professional, or provide any medical advice, diagnosis, or treatment. Consult with a healthcare professional before making any major lifestyle changes or if you have any other concerns about your results. The testimonials featured may have used more than one LifeDNA or LifeDNA vendors’ product or reports.